ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ <u>УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ</u>

К.К.Ким, Г.Н.Анисимов, Е.Б.Зазыбина, И.М.Карпова, А.С.Корнев, С.М.Курмашев, Ю.А.Михайлов

СБОРНИК ДОМАШНИХ ЗАДАНИЙ ПО ТЕОРЕТИЧЕСКИМ ОСНОВАМ ЭЛЕКТРОТЕХНИКИ

Санкт-Петербург

2012

ВВЕДЕНИЕ

Преподавателем студенту сообщается номер его схемы цепи и номер строки в таблице с численными значениями параметров элементов схемы.

Объем работы для студента приведен в каждом задании.

Расчеты выполняются в системе СИ.

Построение графиков можно выполнять с помощью пакетов прикладных программ.

Погрешность расчета считается приемлемой, если она находится в диапазоне -5% - +5%.

Домашнее задание оформляется в письменном виде с соблюдением ГОСТ.

Трудоемкость и сложность каждого задания рассчитана на студентов электротехнических и электромеханических специальностей.

Каждое домашнее задание снабжено примером типового расчета.

<u>ЗАДАНИЕ №1</u> РАСЧЕТ ЦЕПИ ПОСТОЯННОГО ТОКА

Задана линейная электрическая цепь постоянного тока (рис. 1.1 ... 1.40) и параметры ее элементов (табл. 1.1).

Требуется :

- 1. Начертить граф цепи, деревья и дополнения. Количество деревьев и дополнений должно быть не менее количества узлов, уменьшенного на единицу. Составить топографические матрицы цепи.
- 2. Рассчитать токи во всех ветвях методом узловых потенциалов.
- 3. Рассчитать токи во всех ветвях методом контурных токов, сравнить с результатами расчета по п.2..
- 4. Рассчитать показания вольтметров.
- 5. Проверить баланс мощности.
- 6. Рассчитать значения потенциалов точек соединения элементов внешнего контура цепи, построить потенциальную диаграмму. Выбрать оптимальную точку заземления.
- 7. Рассчитать значение тока в цепи указанной преподавателем методом эквивалентного источника тока.
- 8. Рассчитать значение тока в цепи указанной преподавателем методом эквивалентного источника ЭДС.

Варианты домашнего задания

Таблица 1.1

No	L	$F_{\rm T}$	Fa	E_{2}	E.	Fε	Ec	G_{0}	R_1	Ro	Ro	R.	Re	R	R_{7}		R_{0}
J 1=	A	B	\mathbf{B}	B	B B	B	B	См	OM	М 2 Ом	OM	OM	OM	М	Л / Ом	Om	N9 Ом
1	14	100	40	120	60	180	140	0,2	9	18	16	10	19	16	40	20	6
2	8	50	100	70	90	120	80	0,3	9	6	7	16	15	9	20	13	10
3	10	220	110	110	220	220	110	0,4	15	12	6	16	20	20	4	6	5
4	13	100	100	110	110	120	160	0,1	16	20	25	18	22	30	10	14	10
5	6	100	120	60	100	110	220	0,1	25	18	12	20	20	15	10	12	8
6	10	110	110	120	120	150	200	0,2	18	12	16	20	15	15	4	10	8
7	10	110	80	120	110	140	100	0,4	30	7	20	6	10	15	14	7	14
8	12	120	120	130	100	150	200	0,1	25	15	18	10	12	18	10	20	15
9	8	130	130	140	100	120	120	0,2	15	10	10	12	8	10	14	8	10
10	12	150	150	140	140	110	100	0,4	20	15	10	8	6	8	12	5	6
11	4	100	50	100	50	100	60	0,2	6	9	15	7	20	10	16	7	9
12	10	110	220	110	110	100	110	0,2	10	15	12	8	12	9	2	5	6
13	5	200	150	200	150	100	110	0,1	20	15	25	18	12	20	8	8	6
14	12	90	100	60	120	160	120	0,3	25	9	7	16	6	18	6	10	20
15	8	110	110	220	220	100	100	0,2	6	8	15	4	10	15	2	8	5
16	10	110	110	220	220	140	80	0,2	6	10	10	4	10	25	6	12	10
17	12	110	220	110	110	200	100	0,2	10	15	12	8	12	9	2	6	10
18	10	220	110	110	220	100	90	0,4	15	12	8	16	20	20	4	10	15
19	5	200	150	200	150	140	80	0,1	20	15	25	18	12	20	8	12	12
20	6	100	120	80	100	100	90	0,1	25	18	12	20	20	15	10	10	8
21	10	110	110	120	120	120	100	0,2	18	12	16	20	15	15	4	10	8
22	10	100	100	110	110	110	100	0,1	16	20	25	18	22	30	10	12	10
23	12	120	120	130	100	90	100	0,1	25	15	18	10	12	18	10	12	14
24	8	130	130	140	100	120	110	0,2	15	10	10	12	10	14	10	12	14
25	12	150	150	140	140	120	100	0,4	20	15	10	8	6	8	12	8	10
26	4	100	50	100	50	80	70	0,2	6	9	15	7	20	10	16	12	9
27	8	50	100	70	90	60	80	0,3	9	6	7	16	15	9	20	8	10
28	10	110	80	120	110	90	100	0,4	30	7	20	6	10	15	14	10	12
		1							1	1							1

29	12	90	100	60	120	80	60	0,3	25	9	7	16	6	18	6	10	10
30	14	100	40	120	60	50	80	0,2	9	18	16	10	19	15	20	12	14

Рис. 1.3

Схема электрической цепи постоянного тока приведена на рис. 1.41. Числовые данные сведены в табл. 1.2

Ветви №4 тока нет, поэтому в дальнейших расчетах ее можно не учитывать.

T ~	1	0
Гаопина		1
гиолици	1	• —

3

J_0	E_1	E_2	E_3	E_4	R_1	R_2	R_3	R_4	R_5	R_6	G_0
А	В	В	В	В	Ом	Ом	Ом	Ом	Ом	Ом	См
12	110	220	110	110	10	15	12	8	12	9	0,2

- 1. Ориентированный граф, деревья, дополнения, основные топографические матрицы
 - 1.1. Чертим ориентированный граф данной цепи (рис. 1.42).

2

۩

(1)

Дополнения к показанным деревьям приведены на рис. 1.46 – 1.48.

Для дерева на рис. 1.43. составим основные топографические матрицы (**A**, **Q**, **D**).

1.2. Составим матрицу соединений (А). Для этого на графе выберем независимые узлы : узел (1), узел (4), узел (3). Тогда

5		1	-2^{\prime}	3	5	\mathcal{I}_{6}	
	⊕ -1	0	0	1	0	-1	
	$\mathbf{A} = \textcircled{0}$	-1	-1	0	0	1	
	30	0	1	-1	-1	0	

1.3. Составим матрицу главных сечений (**Q**). Для этого на графе (рис. 1.42) покажем следы главных сечений ($\{1\}, \{2\}, \{3\}$) и учтем дерево, показанное на рис. 1.43.

Матрица Q выглядит следующим образом

		1	2	3	5	6
	$\{1\} _1$	0	0	-1	0	1
Q =	$= \{2\} 1 $	1	1	-1	0	0
	{3}	0	-1	1	1	Ο

1.4. Составим матрицу главных контуров (В). Для этого на графе (рис.

1.42) выберем главные контуры и учтем дополнение на рис. 1.46. Главный контур №1 состоит из ветвей 0, 1, 6. Главный контур №2 состоит из ветвей 1, 2, 5. Главный контур №3 состоит из ветвей 0, 3, 5.

Матрица **В** выглядит следующим образом:

	0	1	2	3	5	6
	$1 _{1}$	-1	0	0	0	-1
B =	20	-1	1	0	1	0.
	3	0	0	1	-1	0

2. Расчет токов во всех ветвях цепи методом узловых напряжений.

На рис. 1.49 изображена схема, по которой производим расчет. Она отличается от первоначальной тем, что в ней отсутствует ветвь, содержащая R_4 и E_4 , так как ток в этой ветви равен нулю, и отсутствуют ветви, содержащие вольтметры (внутреннее сопротивление вольтметра $\rightarrow \infty$).

Произвольно зададимся положительными направления токов в ветвях и покажем их стрелками.

Цифрами 1, 2, 3, 4 на схеме (рис. 1.49) пронумеруем узлы. За базисный узел примем узел 4 и будем считать его потенциал равным нулю ($\varphi_4 = 0$).

Найдем потенциалы остальных узлов.

Потенциалы узлов можно найти с помощью матричного уравнения

A
$$G^{(B)}A^{T}\phi = AJ^{(B)}-AG^{(B)}E^{(B)}$$
,

а напряжения ветвей по уравнению

$$\mathbf{U}^{(\mathbf{B})} = \mathbf{A}^{\mathrm{T}} \boldsymbol{\varphi}.$$

Верхний индекс (B) означает принадлежность к ветви цепи, T – знак транспонирования матрицы, $G^{(B)}$ – диагональная матрица проводимостей ветвей, ϕ – матрица-столбец потенциалов узлов, $J^{(B)}$ – матрица-столбец токов источников тока, $E^{(B)}$ – матрица-столбец ЭДС ветвей, $U^{(B)}$ - матрица напряжений ветвей

Если цепь простая (количество узлов мало), как в данном случае, узловые уравнения составляются непосредственно по схеме.

$$\left(\frac{1}{R_3} + \frac{1}{R_6} + G_0\right) \cdot \varphi_1 - \frac{\varphi_3}{R_3} - \varphi_2 G_0 = -\frac{E_3}{R_3} - \boldsymbol{J}_0, \left(\frac{1}{R_1} + \frac{1}{R_5} + G_0\right) \cdot \varphi_2 - \frac{\varphi_3}{R_5} - \varphi_1 G_0 = -\frac{E_1}{R_1} + \boldsymbol{J}_0, \left(\frac{1}{R_3} + \frac{1}{R_5} + \frac{1}{R_2}\right) \cdot \varphi_3 - \frac{\varphi_2}{R_5} - \frac{\varphi_1}{R_3} = \frac{E_3}{R_3} - \frac{E_2}{R_2}.$$

После расчета получим : $\phi_1 = -110,3$ В, $\phi_2 = -74,4$ В, $\phi_3 = -89,5$ В.

По закону Ома для участка цепи, содержащего или не содержащего источник ЭДС, составим уравнения для нахождения токов во всех ветвях цепи

$$I_{0} = \frac{\phi_{1} - \phi_{2}}{I/G_{0}} , \qquad I_{1} = \frac{\phi_{2} + E_{1}}{R_{1}} , \qquad I_{2} = \frac{\phi_{3} + E_{2}}{R_{2}}$$
$$I_{3} = \frac{\phi_{1} - \phi_{3} + E_{3}}{R_{3}} , \qquad I_{5} = \frac{\phi_{3} - \phi_{2}}{R_{5}} , \qquad I_{6} = \frac{-\phi_{1}}{R_{6}} .$$

Подставим в эти формулы численные значения и рассчитаем токи

$$I_{0} = \frac{-110,3+74,4}{1/0,2} = -7,18 \text{ A}, \quad I_{1} = \frac{-74,4+110}{10} = 3,56 \text{ A}, \quad I_{2} = \frac{-89,5+220}{15} = 8,7 \text{ A},$$
$$I_{3} = \frac{-110,3+89,5+110}{12} = 7,44 \text{ A}, \quad I_{5} = \frac{-89,5+74,4}{12} = -1,26 \text{ A}, \quad I_{6} = \frac{110,3}{9} = 12,26 \text{ A}.$$

Токи I_0 и I_5 получились отрицательные, следовательно, их первоначально выбранное направление нужно поменять на противоположное.

Проверка токов производится по первому закону Кирхгофа.

3. Расчет токов в ветвях цепи методом контурных токов.

Расчет производится по схеме на рис. 1.50.

Выберем независимые контуры и произвольно зададимся направлениями контурных токов (I_1, I_2, I_3) в них.

Контурные токи можно найти с помощью матричного уравнения В $\mathbf{R}^{(B)} \mathbf{B}^{T} \mathbf{I}^{(K)} = \mathbf{B} \mathbf{E}^{(B)} - \mathbf{B} \mathbf{R}^{(B)} \mathbf{J}^{(B)}$,

а токи в ветвях находятся из уравнений

 $\mathbf{I}^{(\mathbf{B})} = \mathbf{B}^{\mathrm{T}} \mathbf{I}^{(\mathrm{K})} \mathbf{.}$

 ${f R}^{(B)}$ - матрица сопротивлений ветвей, ${f I}^{(K)}$ - матрица контурных токов.

Если цепь простая, контурные уравнения составляются непосредственно по схеме.

$$\begin{cases} \begin{pmatrix} R_6 + R_1 + \frac{1}{G_0} \end{pmatrix} \cdot I_{1\kappa} - R_1 I_{2\kappa} - \frac{1}{G_0} I_{3\kappa} = E_1 + \frac{J_0}{G_0}, \\ (R_5 + R_2 + R_1) \cdot I_{2\kappa} - R_1 I_{1\kappa} - R_5 I_{3\kappa} = -E_1 + E_2, \\ \begin{pmatrix} \frac{1}{G_0} + R_5 + R_3 \end{pmatrix} \cdot I_{3\kappa} - R_5 I_{2\kappa} - \frac{1}{G_0} I_{1\kappa} = E_3 - \frac{J_0}{G_0}. \end{cases}$$

Подставим численные значения

$$\begin{cases} 24 I_{1\kappa} - 10 I_{2\kappa} - 5 I_{3\kappa} = 170, \\ -10 I_{1\kappa} + 37 I_{2\kappa} - 12 I_{3\kappa} = 110, \\ -5 I_{1\kappa} - 12 I_{2\kappa} + 29 I_{3\kappa} = 50. \end{cases}$$

Решив систему, получим $I_{1\kappa} = 12,26$ A; $I_{2\kappa} = 8,7$ A; $I_{3\kappa} = 7,44$ A.

Теперь найдем токи в ветвях как комбинации контурных токов $I_0 = I_{3\kappa} - I_{1\kappa} + J_0 = 7,18 \text{ A}$; $I_1 = I_{1\kappa} - I_{2\kappa} = 3,56 \text{ A}$; $I_2 = I_{2\kappa}$, $I_3 = I_{3\kappa} = 7,44 \text{ A}$; $I_4 = 0$; $I_5 = I_{2\kappa} - I_{3\kappa} = 1,26 \text{ A}$; $I_6 = I_{1\kappa} = 12,26 \text{ A}$.

4. Определение показаний вольтметров

Для определения показаний вольтметров V_1 и V_2 составим уравнения, используя второй закон Кирхгофа. Для этого выберем направления обхода контуров, в которые входят вольтметры и покажем их на рис. 1.51.

> $U_{V1} = E_1 - I_1 R_1 + I_2 R_2,$ $U_{V2} = E_4 - I_3 R_3 + E_3.$

Рис.1.51

После подстановки численных значений в уравнения получим:

 $U_{\rm V1} = 110 - 3,56 \cdot 10 + 8,7 \cdot 15 = 204,9$ B, $U_{\rm V2} = 110 - 7,43 \cdot 12 + 110 = 130,84$ B.

5. Проверка баланса мощности

Составим уравнение для проверки баланса потребляемой и генерируемой мощностей в исследуемой цепи. Следует заметить, что если направление ЭДС источника и направление тока, протекающего через него, не совпадают, то данный источник ЭДС является потребителем мощности.

$$I_{1}^{2}R_{1} + I_{2}^{2}R_{2} + I_{3}^{2}R_{3} + I_{5}^{2}R_{5} + I_{6}^{2}R_{6} + \frac{I_{0}}{G_{0}} = E_{1}I_{1} + E_{2}I_{2} + E_{3}I_{3} + \frac{I_{0}}{G_{0}}J_{0}.$$

После подстановки численных значений получим

$$3,56^{2} \cdot 10 + 8,7^{2} \cdot 15 + 7,43^{2} \cdot 12 + 1,26^{2} \cdot 12 + 12,26^{2} \cdot 9 + \frac{7,18^{2}}{0,2} =$$
$$= 110 \cdot 3,56 + 220 \cdot 8,7 + 110 \cdot 7,43 + \frac{7,18}{0,2} \cdot 12,$$
$$3554,13 \text{ BT} = 3553,7 \text{ BT}.$$

Рассчитаем расхождение в получившихся значениях

$$\delta = \frac{P_{\text{пр}} - P_{\text{ист}}}{P_{\text{пр}}} \times 100\%, \quad \delta = \frac{3554, 13 - 3553, 7}{3554, 13} \times 100\% = 0,01\%.$$

Баланс мощностей в пределах погрешности соблюдается, что свидетельствует о достоверности рассчитанных значениях токов.

6. Расчет потенциалов в точках соединения элементов внешнего контура и построение потенциальной диаграммы

Буквами a, b, c, d, е на рис. 1.52 обозначим точки внешнего контура, для которых будем искать потенциалы. Потенциал земли принимается равным нулю $(\phi_0=0)$.

$$\phi_{a} = \phi_{0} + E_{4} = E_{4}, \phi_{b} = E_{4} + I_{6} R_{6},$$

$$\phi_{c} = \phi_{b} + I_{2} R_{2}, \phi_{d} = \phi_{c} - E_{2},$$

$$\phi_{e} = \phi_{d} - E_{3}, \phi_{a} = \phi_{d} + I_{3} R_{3}$$

После подстановки численных значений получим

$$\phi_a = 110$$
 B, ϕ_b
,84 B, $\phi_d = 350,84-220 = 130,77$

=110+12,26×9=220,31 B, ϕ_c =220,34+8,7×15=350,84 B, ϕ_d =350,84-220=130,77 B, ϕ_e =130,84-110=20,84 B, ϕ_a =20,84+7,43×12=110 B.

Полученные значения потенциалов используем для построения потенциальной диаграммы (рис. 1.53). По оси абсцисс откладываем значения сопротивлений участков внешнего контура, причем значение сопротивления участка откладываем не от начала координат, а от значения сопротивления предыдущего участка. По оси ординат откладываем значения потенциалов точек внешнего контура, все значения откладываем от начала координат.

Выбираем точку внешнего контура соединения с корпусом устройства, таким образом, чтобы разность потенциалов между данной точкой и любой другой внешнего контура была минимальной. Это - точка «d».

7. Расчет тока в сопротивлении *R*₁ методом эквивалентного источника тока

Расчетная схема показана на рис. 1.54.

<u>Примечание</u>: в схеме выполнено преобразование источника тока в источник ЭДС.

$$R_0 = \frac{1}{G_0} = \frac{1}{0,2} = 5 \text{ OM} ,$$

 $E_0 = \frac{J_0}{G_0} = \frac{12}{0,2} = 60 \text{ B.}$

Решаем задачу по методу контурных токов. Система уравнений:

После подстановки численных значений система уравнений принимает вид

$$\begin{cases} 14 I_{\kappa,3,1} + 0 - 5 I_{\kappa,3,3} = 60 + 110, \\ 0 + 27 I_{\kappa,3,2} + 12 I_{\kappa,3,3} = -220 + 110, \\ -5 I_{\kappa,3,1} + 12 I_{\kappa,3,2} + 29 I_{\kappa,3,3} = 50. \end{cases}$$

Решив систему уравнений, определим контурные токи в режиме короткого замыкания

Тогда ток эквивалентного источника равен $J_{3,\Gamma} = I_{\kappa,3,1} + I_{\kappa,3,2} = 7,43$ А.

Определяем внутреннюю проводимость эквивалентного источника тока. Предварительно вычислим эквивалентное сопротивление.

Расчетная схема после перевода исходной схемы в пассивный режим (источники ЭДС представляют-

ся их внутренними сопротивлениями, а источники тока вместе с ветвями, в которых они расположены, убираются) показана на рис. 1.55. Выполним эквивалентные преобразования (рис. 1.56 – 1.57).

$$R_{50} = \frac{R_0 \cdot R_5}{R_0 + R_5 + R_3} = \frac{5 \cdot 10}{5 + 10 + 12} = 1,85 \quad \text{OM}, \quad R_{30} = \frac{R_3 \cdot R_0}{R_0 + R_5 + R_3} = \frac{5 \cdot 12}{27} = 2,22 \quad \text{OM},$$

$$R_{35} = \frac{R_3 \cdot R_5}{R_0 + R_5 + R_3} = \frac{10 \cdot 12}{27} = 4,44 \quad \text{OM}, \quad R_{3\text{KB}} = \frac{\left(R_{30} + R_6\right) \cdot \left(R_{35} + R_2\right)}{R_{30} + R_6 + R_{35} + R_2} + R_{50}, \quad R_{3\text{KB}} = \frac{\left(2,22 + 9\right) \cdot \left(4,44 + 15\right)}{2,22 + 9 + 4,44 + 15} + 1,85 \quad \text{OM}, \quad R_{3\text{KB}} = 8,96 \quad \text{OM}, \quad G_{3\text{KB}} = \frac{1}{R_{3\text{KB}}} = 0,112 \quad \text{CM}.$$

Соответственно интересующий нас ток равен:

$$I_1 = \frac{J_{3.\Gamma.}}{G_{3KB} + G_1} \cdot G_1 = \frac{7,43}{0,112 + 0,1} \cdot 0,1 = 3,51 \text{ A}.$$

8. Расчет тока в сопротивлении *R*₁ методом эквивалентного источника ЭДС

*R*_{экв} найдено ранее в решении по методу эквивалентного источника тока.

Исходную схему преобразуем к виду, показанному на рис. 1.58.

Напряжение холостого хода определяется из уравнения, составленного согласно второго закона Кирхгофа:

$$U_{\text{X.X.}} - I_{6\text{X.X.}}R_6 - I_{0\text{X.X.}}1/G_0 = E_1 + E_6,$$

 $U_{\text{x.x.}} = 68,27 \text{ B.}$

Отсюда ток в ветви №1 равен:

$$I_1 = \frac{U_{\text{X.X.}}}{R_{3\text{KB}} + R_1} = \frac{68,27}{8,86+10} = 3,56$$
 A.

<u>ЗАДАНИЕ № 2</u> РАСЧЕТ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕ-СКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА КОМПЛЕКСНЫМ МЕТОДОМ

Провести расчет линейной электрической цепи комплексным методом в соответствии со схемами, приведенными на рис. 2.1 ... 2.4 и содержащими синусоидальные источники ЭДС и тока:

$$e = E_m \sin(\omega t + \Psi_e),$$

$$J = J_s \sin(\omega t + \Psi_e).$$

где *е* и *i* – мгновенные значения ЭДС и тока, E_m и I_m – амплитудные значения ЭДС и тока, Ψ_e и Ψ_i – начальные фазы ЭДС и тока соответственно; ω – круговая частота (ω =2 πf); *t* – текущее время.

Числовые данные параметров источников и элементов схем заданы в табл. 2.1

Требуется:

1. Рассчитать токи во всех ветвях приемника и напряжение на зажимах ветвей приемника. Провести проверку полученных значений по первому и второму законам Кирхгофа (для независимых узлов и контуров соответственно), при этом относительная погрешность проведенных расчетов не должна превышать 1 %.

2. Определить действующие значения токов во всех ветвях электрической цепи и напряжений на зажимах ветвей приемника.

3. Определить показания приборов: амперметра A, вольтметра V и ваттметра W.

4. Рассчитать активную, реактивную и полную мощности в комплексной форме, коэффициент мощности приемника. Проверить баланс мощностей.

5. На комплексной плоскости построить векторную диаграмму ЭДС, токов и напряжений. Проверить законы Кирхгофа.

6. Написать выражения для мгновенных значений тока (*i*), напряжения (*u*), активной (p_a), реактивной (p_p) и полной (p) мощностей на зажимах приемника. Построить графики зависимостей этих величин от времени (*t*).

Варианты домашнего задания

Таблица 2.1

Mo	E_m	Ψ_e	$R_{\scriptscriptstyle m BH1}$	$X_{L_{BH1}}$	J_m	Ψ_J	$G_{\scriptscriptstyle m BH2}$	R_1	L_1	C_1	R_2	L_2	C_2	R_3	L_3	C_3	f
JN⊡	В	град	Ом	Ом	Α	град	См	Ом	мГн	мкΦ	Ом	мГн	мкΦ	Ом	мГн	мкФ	Гц
1	120	45	5	4	60	-25	0,25	4	2	8	10	35	100	20	40	500	50
2	30	40	6	3	25	25	0,2	4	0,5	8	10	3,5	50	18	4	20	500
3	90	-40	4	5	40	35	0,3	5	0,2	3	12	0	3	15	0,3	2	5000
4	140	50	3	3	80	0	0,15	8	4	100	14	45	80	16	60	∞	50
5	40	54	2	6	30	20	0,2	10	1,5	80	18	4,5	∞	22	5,5	40	500
6	115	-25	4	4	65	-45	0,2	12	0,5	5	20	0,75	4	30	0	4	5000
7	250	10	6	4	120	60	0,4	3	3	8	16	140	20	28	250	40	50
8	210	20	8	5	120	35	0,3	7	0	65	15	6,5	40	25	6	55	500
9	140	-35	5	4	90	10	0,2	10	0,7	8	18	0,5	5	20	0,4	6	5000
10	70	42	6	2	45	-22	0,1	6	9	75	30	150	8	45	220	180	50
11	150	28	5	2	80	60	0,3	6	1,2	50	25	0	30	32	25	5	500
12	65	-48	2	6	36	48	0,2	14	0	3	16	4,5	0,4	18	0,45	0,3	5000
13	90	53	4	4	55	-22	0,4	10	5,6	70	24	40	55	25	180	∞	50
14	30	45	5	3	20	-45	0,2	18	2,4	35	22	1,5	45	27	0	38	500
15	20	-10	5	2	40	30	0,15	16	3	8	12	0,44	9	26	0,34	2,5	5000
16	110	40	6	3	70	20	0,1	3	4	45	15	40	90	0	30	400	50
17	40	-50	7	5	20	70	0.2	5	3	30	12	32	83	17	3,7	40	500
18	72	34	4	5	45	43	0,25	0	0,4	5	16	0,8	5	18	0,2	3	5000
19	100	62	5	4	30	-26	0,2	9	2	8	17	32	33	40	200	150	50
20	60	-38	7	2	35	60	0,15	4	1,5	40	12	0	35	28	42	47	500
21	160	38	5	4	85	-38	0,25	12	0,6	55	42	3,6	0,5	30	0	0,2	5000
22	310	23	3	5	160	-25	0,1	12	42	8	42	180	30	34	320	30	50
23	190	67	5	4	100	33	0,3	12	3,6	30	37	36	3,5	32	24	∞	500
24	150	15	6	2	80	-15	0,2	12	0,6	x	40	2,6	2	30	3,2	24	5000
25	25	25	5	2	15	15	0,1	4	6	47	16	110	35	17	70	∞	50
26	42	-40	8	6	20	30	0,15	4	1.3	∞	15	7	25	14	11	5,6	500
27	27	29	5	2	17	67	0,1	4	0,15	32	14	1,8	8	16	0,45	1,25	5000
28	400	20	8	4	250	-20	0,2	3	4,5	∞	12	54	80	20	300	60	50
29	60	60	5	4	27	-28	0,3	8	2,4	10	16	18	7,2	23	0	12	500
30	55	45	7	5	45	-30	0,2	6	0,4	38	45	5,4	∞	50	0,45	0,3	5000

ПРИМЕР РАСЧЕТА

На рис. 2.5 приведена схема электрической цепи, содержащей источники ЭДС и тока. Там же указаны величины внутренних сопротивлений и проводимостей источников. Остальные численные значения параметров приведены в табл. 2.2.

Т	- 6			_	2	1
1	ao	ЛИ	Ц	a	2.	.2

E_{m1}	Ψ_E	J_{m2}	Ψ_J	R_1	L_1	R_2	L_2	C_2	R_3	L_3	C_3	f
В	град	Α	град		мГн	Ом	мГн	мκΦ	Ом	мГн	мκΦ	
	_		_	Ом								Γц
25	0	15	30	2	0,6	12	4,5	60	18	3	12	500

<i>R</i> _{в1}	$G_{_{\mathbf{B}_{2}}}$	L _{в1}
Ом	См	мГн
5	0,25	1,27

1. Предварительно выполним эквивалентное преобразование схемы, заменим источник тока $J_2 = J_m \sin(\omega t + \Psi_J) = \frac{15}{\sqrt{2}} e^{j30^\circ} = 10,71 e^{j30^\circ} = 9,28 + j5,36 \text{ A},$

на эквивалентный источник ЭДС (\dot{E}_2) с ЭДС $\dot{E}_2 = \frac{\dot{J}_2}{G_{e_2}} = \frac{10,71e^{j30^\circ}}{0,25} = 42,84e^{j30^\circ} = 37,1+j21,42$ В и внутренним сопротивлением $R_{e_2} = \frac{1}{G_{e_2}} = \frac{1}{0,25} = 4$ Ом. Получили два последовательно соединенных источника ЭДС:

 \dot{E}_2 и \dot{E}_1 ($e_1 = E_m \sin \omega t = \frac{25}{\sqrt{2}} = 17,86$ А, $\dot{E}_1 = 17,86$ А), заменим их одним эквивалентным источником ЭДС (E_{3x88}). $\dot{E}_{3x88} = \dot{E}_1 - \dot{E}_2 = 17,86 - 37,1 - j21,42 = -19,24 - j21,42 = 28,79e^{j48,07}$ В, $R_{3x88,8x} = R_{B_1} + R_{B_2} = 5 + 4 = 9$ ОМ, $\underline{Z}_{3x8,8x} = R_{3x8,8x} + jX_{Le_1} = 5 + j4 = 9,85e^{j23,96}$ ОМ. 2. Рассчитаем эквивалентное сопротивление приемника $\underline{Z}_{3x88,8p} = \underline{Z}_1 + \frac{\underline{Z}_2 \underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3}$, $\underline{Z}_1 = R_1 + jX_{L_1} = 2 + j1,88 = 2,75e^{j43,23}$ Ом, $\underline{Z}_2 = R_2 + j(X_{L_2} - X_{C_2}) = 12 + j8,82 = 14,89e^{j36,32^\circ}$ Ом, $\underline{Z}_3 = R_3 + j(X_{L_3} - X_{C_3}) = 18 - j17,12 = 24,84e^{-j43,56^\circ}$ Ом, $\underline{Z}_2 \underline{Z}_3 = 11,88e^{j8,22^\circ} = 11,76 + j1,7$ Ом, $\underline{Z}_{3x88,8p} = 2 + j1,88 + 11,76 + j1,7 = 13,76 + j3,58 = 14,22e^{j14,58^\circ}$ Ом.

3. Рассчитаем полное сопротивление цепи

 $\underline{Z}_{\text{вк}} = \underline{Z}_{\text{экв.вх}} + \underline{Z}_{\text{экв.пр}} = 9 + j4 + 13,76 + j3,58 = 22,76 + j7,58 = 23,99e^{j18,42^\circ}$ Ом. Результаты расчетов сведены в табл. 2.3.

Таблица 2.3

	В алгебраической форме	В показательной форме
Сопротивление		Ом
<u>Z</u> экв.	9 + j4	9,85e ^{j23,96°}
<u>Z</u> экв. нагрузки	13,76 + <i>j</i> 3,58	$14,22e^{j14,58^{\circ}}$
\underline{Z}_1	2 + j1,88	2,75e ^{j43,23°}
\underline{Z}_2	12 + j8,82	14,89e ^{$j36,32^\circ$}
\underline{Z}_3	18 – <i>j</i> 17,12	24,84e ^{-j43,56°}
$\frac{\underline{Z}_2\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3}$	11,76 + <i>j</i> 1,7	11,88e ^{<i>j</i>8,22°}
$\underline{Z}_2 + \underline{Z}_3$	30 — <i>j</i> 8,3	$31,13e^{-j15,46^\circ}$
$\underline{Z}_{\scriptscriptstyle \mathrm{BX}}$	22,76+ <i>j</i> 7,58	23,99e ^{<i>j</i>18,42°}
$jX_{L_{ m nx}}$	<i>j</i> 4	$4\mathrm{e}^{j90^\circ}$
jX_{L_1}	<i>j</i> 1,88	1,88e ^{j90°}
jX_{L_2}	<i>j</i> 14,13	$14,13e^{j90^{\circ}}$
$-jX_{C_2}$	- <i>j</i> 5,31	$5,31e^{-j90^{\circ}}$
jX_{L_3}	<i>j</i> 9,42	$9,42e^{j90^{\circ}}$
$-jX_{C_3}$	- <i>j</i> 26,54	$26,54e^{-j90^\circ}$
$R_{_{\mathrm{B}_{1}}}$	5	5
$R_{_{\mathrm{B}_2}}$	4	4

R_1	2	2
R_2	12	12
R_3	18	18
X_1	1,88	1,88
X 2	8,82	8,82
<i>X</i> ₃	-17,12	-17,12

4. Рассчитаем токи в ветвях приемника $\dot{I}_{1} = \frac{\dot{E}_{3KB}}{Z_{m}} = \frac{28,79e^{j48,07^{\circ}}}{23.99e^{j18,42^{\circ}}} = 1,20e^{j29,65^{\circ}} = -1,04 - j0,59 \,\mathrm{A},$ $\dot{I}_{2} = \dot{I}_{1} \frac{\underline{Z}_{3}}{\underline{Z}_{2} + \underline{Z}_{3}} = \frac{1,20e^{j29,65^{\circ}} 24,84e^{-j43,56^{\circ}}}{31,13e^{-j15,46^{\circ}}} = 0,96e^{j1,55^{\circ}} = -0,96 - j0,03 \text{ A},$ $\dot{I}_3 = \dot{I}_1 - \dot{I}_2 = 1,04 + j0,59 - 0,96 - j0,03 = 0,08 + j0,56 = 0.57e^{j81,87^\circ} \text{ A}.$ напряжения на 5. Рассчитаем элементах 2.6цепи (рис. $\dot{U}_{01} = \dot{I}_{1} \underline{Z}_{_{3K6.6X}} = 1,20e^{j29,65^{\circ}} 9,85e^{j23,96^{\circ}} = 11,82e^{j53,61^{\circ}} B, \quad \dot{U}_{12} = \dot{I}_{1} R_{1} = 1,20e^{j29,65^{\circ}} \cdot 2 = 2,40e^{j29,65^{\circ}} B,$ $\dot{U}_{23} = \dot{I}_1 j X_{L_1} = 1,20 e^{j29,65^\circ} \cdot 1,88 e^{j90^\circ} = 2,26 e^{j119,65^\circ} \text{ B}, \qquad \dot{U}_{34} = \dot{I}_2 R_2 = 0,96 e^{j1,55^\circ} \cdot 12 = 11,52 e^{j1,55^\circ} \text{ B},$ $\dot{U}_{45} = \dot{I}_2 j X_{L_2} = 0,96e^{j1.55^\circ} \cdot 14,13e^{j90^\circ} = 13,56e^{j91.55^\circ}$ $\begin{array}{c} \cdot 18 = 10,26e^{j81,87^{\circ}} \quad B, \\ \downarrow_{56} = I_2(-jX_{C_2}) = 0,96e^{j1,55^{\circ}} \cdot 5,31e^{-j90^{\circ}} = 5,1e^{-j88,45^{\circ}} \quad B, \\ \dot{U}_{78} = \dot{I}_3 jX_{L_3} = 0,57e^{j81,87^{\circ}} \cdot 9,42e^{j90^{\circ}} = 5,37e^{j171,87^{\circ}} \quad B, \\ \dot{U}_{86} = \dot{I}_3(-jX_{C_3}) = 0,57e^{j81,87^{\circ}} \cdot 26,54e^{-j90^{\circ}} = 15,13e^{-j8,13^{\circ}} \quad B. \\ \Pi_0 \quad \Pi_0 \quad$ 6. Определим показания приборов амперметр показывает действующее значение тока I_1 $I_{A} = 1,2$ A, вольтметр показывает действующее зна-Рис. 2.5 чение напряжения $U_{\rm BX} = U_{16}$

$$\dot{U}_{16} = \dot{U}_{12} + \dot{U}_{23} + \dot{U}_{34} + \dot{U}_{45} + \dot{U}_{56} = 2,4e^{j29,65^{\circ}} + 2,26e^{j119,65^{\circ}} + 11,52e^{j1,55^{\circ}} + 13,56e^{j91,55^{\circ}} + 5,1e^{-j88,45^{\circ}} = 2,09 + j1,19 - 1,12 + j1,96 + 11,51 + j0,31 - 0,37 + j13,56 + 0,13 - j5,09 = 17,06e^{j44,22}$$
B.
$$U_{14} = 17,06$$
B.

• ваттметр показывает активную мощность, потребляемую приемником $P_W = I_A U_V \cos \varphi = I_A U_V \cos (\Psi_{u_{16}} - \Psi_{i_1}) = 1,2 \cdot 17,06 \cdot \cos(44,22^\circ - 29,65^\circ) =$

 $=1,2.17,06.\cos(14,55^{\circ})=19,81$ BT.

7. Рассчитаем мощности

$$P_a = P_W = 19,82$$
 BT, $Q = I_a U_v \sin \varphi = 1,2 \cdot 17,06 \cdot 0,5 = 5,12$ BAp,
 $\tilde{S} = P_a + jQ = 19,82 + j5,12 = 20,1e^{j14,48^\circ}$ BA.

Коэффициент мощности равен: $\cos \varphi = 0.97$.

Внимание. В пределах погрешности расчета значение угла φ (14.55°: 14.48°)должно совпасть с фазой <u>Z</u>_{экв.пр} (14,58°).

8. Проверим баланс мощностей

 $\widetilde{S}_{\text{reh}} = \dot{E}_{_{\text{3KB}}} I_{1}^{*} = 28,79 e^{j48,07^{\circ}} \cdot 1,20 e^{-j29,65^{\circ}} = 34,55 e^{j18,42^{\circ}} = 32,78 + j10,92 \text{ BT},$

*-знак сопряжения,

$$\tilde{S}_{\text{norp}} = P_a + jQ$$
,

$$P_{a} = I_{1}^{2}(R_{1} + R_{\text{\tiny 3KB,RX}}) + I_{2}^{2}R_{2} + I_{3}^{2}R_{3} = 1,20^{2}(2+9) + 0,96^{2} \cdot 12 + 0,57^{2} \cdot 18 = 33,21 \text{ BT},$$

$$Q = I_{1}^{2}(X_{1} + X_{L_{\text{IX}}}) + I_{2}^{2}X_{2} + I_{3}^{2}X_{3} = 1,20^{2}(1,88+4) + 0,96^{2} \cdot 8,82 + 0,57^{2} \cdot (-17,22) = 11,04 \text{ BAp},$$

$$\begin{cases} \widetilde{S}_{\text{потр}} = 33,21 + j11,04 = 35e^{j18,39^{\circ}} \text{BA}, \\ \widetilde{S}_{\text{ген}} = 32,76 + j10,92 = 33,55e^{j18,42^{\circ}} \text{BA} \end{cases}$$

Расхождение между модулями полных мощностей равно

$$\delta_{\rm M} = \frac{\left|\widetilde{S}_{\rm norp} - \widetilde{S}_{\rm reh}\right|}{\widetilde{S}_{\rm reh}} 100 = \frac{\left|35 - 33,55\right|}{33,55} 100 = 4\%.$$

Расхождение между фазами полных мощностей равно

$$\delta_{\varphi} = \frac{\left|\widetilde{S}_{\text{потр}_{\varphi}} - \widetilde{S}_{\text{ген}_{\varphi}}\right|}{\widetilde{S}_{\text{ген}_{\varphi}}} 100 = \frac{\left|18,39 - 18,42\right|}{18,42} 100 = 0,16 \%.$$

9. Запишем формулы для мгновенных значений величин

$$i_{1} = 1,2 \cdot \sqrt{2} \cdot \sin(\omega t + 29,65^{\circ}) = 1,70\sin(\omega t + 29,65^{\circ}) \text{ A},$$

$$u_{\text{np.}} = u_{16} = 17,06 \cdot \sqrt{2} \cdot \sin(\omega t + 44,22^{\circ}) = 24,13\sin(\omega t + 44,22^{\circ}) \text{ B},$$

$$p_{a} = R_{\text{\tiny 3KB} \text{ np}} i_{1}^{2} = 13,76 \cdot \{1,70\sin(\omega t + 29,65^{\circ})\}^{2} = 19,88 \cdot [1 - \cos(2\omega t + 59,30^{\circ})] = 19,88 \cdot [1 + \sin(2\omega t - 30,7^{\circ})] \text{ BT},$$

$$p_{p} = X_{\text{\tiny 3KB} \text{ np}} i_{1}^{2} = 3,58 \cdot \{1,70\sin(\omega t + 29,65^{\circ})\}^{2} = 5,17 \cdot \sin(2\omega t + 30,70^{\circ}) \text{ BAp},$$

$$p = u_{\text{np}}i_{1} = 24,13\sin(\omega t + 44,22^{\circ}) \cdot 1,70\sin(\omega t + 29,65^{\circ}) = 19,89 - 20,51\cos(2\omega t + 73,87^{\circ})$$

$$= 19,89 + 20,47\sin(2\omega t - 16,13^{\circ}) \text{ BA}$$

Графики величин приведены на рис. 2.8.

Рис. 2.8

<u>ЗАДАНИЕ №3</u> РАСЧЕТ ТРЕХФАЗНОЙ ЦЕПИ

Нагрузки присоединены r симметричному трехфазному генератору с помощью линии электропередач. Нагрузки соединены по схеме «звезда» и «треугольник» (рис. 3.1).

Числовые данные приведены в табл. 3.1.

Величины фазных ЭДС синусоидальной формы задаются преподавателем $(E_{\phi} = 127, 220, 380, 500 \text{ B}).$

Требуется:

- 1. Рассчитать комплексные фазные токи и напряжения на каждой нагрузке, линейные токи.
- 2. Рассчитать показания амперметров и ваттметров.
- 3. Рассчитать активную, реактивную и полную мощность трехфазной цепи.
- 4. Проверить баланс мощностей.
- 5. Построить топографическую диаграмму напряжений и токов на комплексной плоскости.

Варианты домашнего задания

Таблица 3.1

ва-	Л	инейн	ые	Приемник «з в е з д а»																	
ри-	Г	іровод	a			фаз	a <i>A</i> '0'			ϕ a 3 a $B'O'$					ϕ a 3 a CO						
ант	$R_{ m II}$	$X_{\Pi L}$	$X_{\Pi C}$	R	X_L	X_C	G	B_L	B _C	R	X_L	X_C	G	B_L	B _C	R	X_L	X_C	G	B_L	B_{C}
	Ом	Ом	Ом	Ом	Ом	Ом	См	См	См	Ом	Ом	Ом	См	См	См	Ом	Ом	Ом	См	См	См
1	2	2	_	20	30	50	_	_	_	30	50	20	_	_	-	—	—	—	0,05	0,05	0,1
2	_	—	-	15	2	10	-	-	-	15	2	10	-	-	-	10	20	10	_	—	_
3	_	_	-	15	5	10	_	-	-	10	2	15	_	_	-	10	20	8	—	—	—
4	_	—	-	10	15	-	—	-	-	12	14	-	—	-	-	10	—	18	—	—	—
5	1	1	2	-	-	-	-	-	-	-	-	-	-	-	-	—	—	—	—	—	—
6	2	3	1	_	_	_	0,05	0,04	0,05	100	100	50	-	_	-	—	—	—	0,02	0,01	0,02
7	1	—	_	20	20	_	-	-	_	20	20	_	-	_	-	20	20	—	—	—	—
8	1	—	-	20	40	60	—	-	-	40	60	20	_	-	-	60	20	40	—	—	—
9	-	—	_	60	100	20	—	_	_	60	100	20	_	_	-			обрыв	фазы		
10	_	—	_		_	_	0,01	0,02	0,01	_		_	0,02	0,01	0,02	10	15	10	—	_	_
11	_	—	-	10	15	-	-	-	-	10	10	-	-	_	-	—	—	—	0,02	0,02	0,04
12	_	—	_		_	_	0,05	0,04	0,05	200	100	200	-	_	-	короткое замыкание фазы					
13	-	—	—	10	20	35	—	-	—		корот	кое зам	иыкание	е фазы		12	14	28	—	—	—
14	_	_	-	15	10	—	_	-	-	—	_	—	0,01	0,02	0,01	_	—	—	0,05	0,05	0,04
15	_	—	-		40		0,05	-	0,02	20	—	20	-	_	-	18	_	10	0,02	—	0,02
16	—	_	—	40	20	60	—	—	—	_	—	—	0,05	0,04	0,05	18	18	-	—	—	-
17	—	_	-	-	10	—	0,1	0,1	0,5	_	10	—	0,1	0,1	0,5			обрын	в фазы		
18	—	_	-	10	—	—	0,05	0,1	0,05		корот	кое зам	иыкание	е фазы		-	-	-	0,1	0,05	0,1
19	—	_	-	35	10	20	-	-	—	16	—	12	0,1	-	0,1	10	12	10	—	_	-
20	—	_	-	8	16	8	-	-	—	—	—	—	0,05	0,1	0,05	8	16	8	—	_	-
21	_	_	—	6	16	8	-	-	—	6	16	8	_	-	-	6	16	8	—	—	-
22	—	—	-	12	16	32	-	—	—	12	16	32	—	-	-	12	16	32	—	—	-
23	_	_	—	6	-	8	-	-	—	6	—	8	_	-	-	6	8	-	—	—	-
24	—	—	-	10	-	-	0,2	—	0,2	10	—	—	0,2	-	0,2	10	-	-	0,2	—	0,2
25	—	_	—	18	30	6	-	-	—	18	30	6	—	-	-	18	30	6	—	_	-
26	—	—	—	12	20	4	—	—	—	12	20	4	—	_	-	12	20	4	—	—	-
27	_	_	—	24	2	20	-	-	—	24	2	20	_	-	-	24	2	20	—	—	-
28	—	—	—	6	8	16	—	—	—	6	8	16	—	_	-	6	8	16	—	—	-
29	—	—	—	18	24	—	—	—	—	18	24	—	—	_	-	18	24	-	—	—	-
30	—	_	—	4	-	—	0,2	_	0,2	4	—	—	0,2	_	0,2	4	-	-	0,2	—	0,2

Таблица 3.2

ва-	J	Іинейн	ые	Приемник «треугольник»																	
ри-		провод	1a		ϕ a 3 a \overrightarrow{AB} ϕ a 3 a \overrightarrow{BC}								фа	за СА							
ант	R_{Π}	$X_{\Pi L}$	$X_{\Pi C}$	R	X_L	X _C	G	B_L	B _C	R	X_L	X _C	G	B_L	B _C	R	X_L	X _C	G	B_L	B _C
	0	Ом	Ом	Ом	Ом	Ом	См	См	См	Ом	Ом	Ом	См	См	См	Ом	Ом	Ом	См	См	См
	М																				
1	2	2	_	-	—	_	-	-	—	_	—	—	-	_	_	_	—	_	_	-	_
2	—	—	—	6	16	8	-	-	—	8	26	32	—	_	—	4	15	12	—	—	_
3	—	—	—	8	16	8	_	-	—	8	32	24	—	-	_	8	15	7	_	-	_
4	-	-	-	-	—		0,05	0,1	0,05	-	-	_	0,05	0,1	0,05	—	-	-	0,05	0,1	0,05
5	1	1	2	—	-	-	0,2	0,2	0,25	10	15	10	—	-	-	20	20	25	—	-	-
6	2	3	1	—	-		_	_	_		-	_	_	-	_	—	—		_	-	-
7	-	-	-			обрі	ыв фазы	[60	100	20	—	-	-	80	40	100	-	-	—
8	—	-	-	60	100	20	-	-	—			обрь	ыв фазы			80	40	100	-	-	_
9	—	—	-	30	70	30	-	-	_	_	—	_	0,01	0,02	0,01	40	—	40	_	-	_
10	—	—	-	30	—	40	0,01	0,02	0,01	12	—	15	—	_	_	10	8	_	_	-	_
11	—	—	—	15	40	20	0,02	0,02	0,02	10	10	_	0,1	0,5	0,4	10	20	10	—	_	
12	—	-	-	8	2	10	0,2	0,25	0,2	25	25	10	_	-	-	-	-	_	0,04	0,04	0,05
13	—	-	-	2	10	2	0,2	0,25	0,2	20	30	10	_	-	-	-	-	_	0,02	0,02	0,4
14	—	-	-	10	2	10	0,2	0,25	0,2	20	25	20	_	-	-	40	25	40	-	-	-
15	—	_	-	—	—	_	0,05	0,05	0,02	30	10	40	—	_	-	5	—	8	0,1	-	0,04
16	—	—	-	30	20	50	-	-	_	4	20	4	0,05	0,1	0,05	—	—	_	0,05	0,02	0,04
17	-	—	-	10	5	10	0,25	0,25	0,5	20	30	10	—	_	-	—	25	-	0,02	0,02	0,04
18	-	-	-	10	15	10	-	-	_	4	6	2	0,2	0,2	-	—	15		0,5	-	0,5
19	—	—	-	5	15	10	0,25	0,25	0,5	30	10	40	0,1	_	0,1	—	-	20	0,4	0,4	-
20	-	—	-	10	50	10	0,05	0,05	0,04	20	10	20	_	-	_	—	—	_	0,01	0,01	0,02
21	—	—	-	8	6	16	-	-	—	8	6	16	—	_	-	8	6	16	—	-	-
22	—	—	-	16	16	4	-	-	_	16	16	4	—	_	_	16	16	4	_	-	-
23	—	—	-	—	—	_	0,2	0,25	0,2	_	—	_	0,2	0,25	0,2	—	—	_	0,2	0,25	0,2
24	—	—	—	10	-		0,8	0,2	_	10	-	_	0,8	0,2	-	10	—		0,8	0,2	-
25	-	-	-	8	4	10	-	-	-	8	4	10	_	_	—	8	4	10	-	-	-
26	—	-	-	16	8	20	-	-	—	16	8	20	_	-	-	16	8	20	-	-	-
27	—	-	-	24	10	20	-	-	—	24	10	20	_	-	-	24	10	20	-	-	-
28	—	—	_	4	-	_	0,2	0,25	0,2	4	-	_	0,2	0,25	0,2	4	_	_	0,2	0,25	0,2
29	_	_	_	_	5	_	0,4	—	0,4	_	5	_	0,4	_	0,4	—	5	_	0,4	—	0,4
30	_	_	—	8	16	10	-	-	—	8	16	10	—	_	-	8	16	10	—	-	—

Начальные данные:

 $U_{\phi} = 380$ В, $Z_{\pi A} = 10 + j10$ Ом, $Z_{\pi B} = 5$ Ом, $Z_{\pi C} = -j5$ Ом. Нагрузка «звезда»:

<i>R</i> _{<i>a</i>} =15 Ом,	<i>R</i> _b =15 Ом,	$R_c = 10$ Om,
<i>X_{La}</i> = 2 Ом,	$X_{Lb} = 2$ OM,	$X_{Lc} = 20$ Om,
$X_{Ca} = 10$ OM,	$X_{Cb} = 10$ Ом,	$X_{Cc} = 8$ Ом.

Нагрузка «треугольник»:

$R_{ab} = 8$ OM,	$R_{ac} = 8$ OM,	$R_{ca} = 8$ OM,
<i>X</i> _{<i>Lab</i>} =16 Ом,	<i>X</i> _{<i>Lac</i>} = 32 Ом,	$X_{Lca} = 15$ Om,
$X_{Cab} = 8$ OM,	<i>X_{cac}</i> = 24 Ом,	$X_{Cca} = 7$ Ом.

Схема цепи, приведенная на рис. 3.1, с учетом начальных данных

1. Рассчитаем полные сопротивления фаз нагрузки и линейных проводов.

1.1. Полные сопротивления линейных проводов:

$$\underline{Z}_{La} = 10 + j10 = 14.14e^{j45^{\circ}}$$
 OM, $\underline{Z}_{Lb} = 5$ OM, $\underline{Z}_{Lc} = -j5 = 15e^{-j90^{\circ}}$ OM.

30

1.2. Полные сопротивления фаз нагрузки («звезда»):

$$\underline{Z}_{a} = R_{a} + j(X_{La} - X_{Ca}) = 15 + j(2 - 10) = 15 - j8 = 17e^{-j28.07^{\circ}} \text{ Om},$$

$$\underline{Z}_{b} = R_{b} + j(X_{Lb} - X_{Cb}) = 15 + j(2 - 10) = 15 - j8 = 17e^{-j28.07^{\circ}} \text{ Om},$$

$$\underline{Z}_{c} = R_{c} + j(X_{Lc} - X_{Cc}) = 10 + j(20 - 8) = 10 + j12 = 15,62e^{j50.19^{\circ}} \text{ Om}.$$

1.3. Полные сопротивления фаз нагрузки («треугольник»):

$$\begin{split} \vec{Z}_{ab} &= R_{ab} + j(X_{Lab} - X_{cab}) = 8 + j(16 - 8) = 8 + j8 = 11.31e^{j45^{\circ}} \quad \text{OM}, \\ \vec{Z}_{bc} &= R_{bc} + j(X_{Lbc} - X_{Cbc}) = 8 + j(32 - 24) = 8 + j8 = 11e^{j45^{\circ}} \quad \text{OM}, \\ \vec{Z}_{ca} &= R_{ca} + j(X_{Lca} - X_{Cca}) = 8 + j(32 - 24) = 8 + j8 = 11e^{j45^{\circ}} \quad \text{OM}. \\ 1.4. \Pi \text{peoofpa3yeM} & \text{(3Be3Jy)} & \text{B} \text{ SKBИВАЛЕНТНЫЙ ("TPEYFONDHUK"):} \\ \vec{Z}_{ab} &= \frac{\vec{Z}_{a}\vec{Z}_{b} + \vec{Z}_{b}\vec{Z}_{c} + \vec{Z}_{c}\vec{Z}_{a}}{\vec{Z}_{c}} = \\ &= \frac{17e^{-j2807^{\circ}} 17e^{-j2807^{\circ}} + 17e^{-j2807^{\circ}} 15,62e^{j5019^{\circ}} + 17e^{-j2807^{\circ}} 15,62e^{j5019^{\circ}}}{15,62e^{j5019^{\circ}}} = \\ &= 47,75e^{-j84.68^{\circ}} = 4,59 - j43,51 \quad \text{OM}, \\ \vec{Z}_{bc} &= \frac{\vec{Z}_{a}\vec{Z}_{b} + \vec{Z}_{b}\vec{Z}_{c} + \vec{Z}_{c}\vec{Z}_{a}}{\vec{Z}_{a}} = \\ &= \frac{17e^{-j2807^{\circ}} 17e^{-j2807^{\circ}} + 17e^{-j2807^{\circ}} 15,62e^{j5019^{\circ}} + 17e^{-j2807^{\circ}} 15,62e^{j5019^{\circ}}}{17e^{-j2807^{\circ}}} = \\ &= 40,2e^{-j5.71^{\circ}} = 40 - j4 \quad \text{OM}, \\ \vec{Z}_{ca} &= \frac{\vec{Z}_{a}\vec{Z}_{b} + \vec{Z}_{b}\vec{Z}_{c} + \vec{Z}_{c}\vec{Z}_{a}}{\vec{Z}_{b}} = \\ \end{aligned}$$

$$=\frac{17e^{-j28.07^{\circ}}17e^{-j28.07^{\circ}}+17e^{-j28.07^{\circ}}15,62e^{j50.19^{\circ}}+17e^{-j28.07^{\circ}}15,62e^{j50.19^{\circ}}}{17e^{-j28.07^{\circ}}}=$$

 $=40,2e^{-j5.71^{o}}=40-j4$ OM.

Первоначальная цепь (рис. 3.2) преобразуется в цепь, приведенную на рис. 3.3.

1.5. Данную цепь преобразуем в эквивалентный «треугольник» (рис. 3.4):

$$\underline{Z}_{AB} = \frac{\underline{Z}_{ab}\underline{Z}_{ab}}{\underline{Z}_{ab} + \underline{Z}_{ab}} = \frac{11,31e^{j45^{\circ}}47,75e^{-j83.97^{\circ}}}{8+j8+4,559-j43,51} = 13,14e^{j31.5^{\circ}} = 11,2+j6,864 \text{ Om},$$

$$\underline{Z}_{BC} = \frac{\underline{Z}_{bc}\underline{Z}_{bc}}{\underline{Z}_{bc} + \underline{Z}_{bc}} = \frac{11,31e^{j45^{\circ}}40,2e^{-j5.71^{\circ}}}{8+j8+40-j4} = 9,44e^{j34.53^{\circ}} = 7,779+j5,352 \text{ Om},$$

$$\underline{Z}_{CA} = \frac{\underline{Z}_{ca}\underline{Z}_{ca}}{\underline{Z}_{ca} + \underline{Z}_{ca}} = \frac{11,31e^{j45^{\circ}}40,2e^{-j5.71^{\circ}}}{8+j8+40-j4} = 9,44e^{j34.53^{\circ}} = 7,779+j5,352 \text{ Om}.$$

1.6. Преобразуем «треугольник в эквивалентную «звезду» » (рис. 3.5):

$$\frac{Z'_{A}}{Z'_{AB}} = \frac{Z'_{AB} \cdot Z'_{CA}}{Z'_{AB} + Z'_{BC} + Z'_{CA}} = \frac{13,14e^{j31.5^{\circ}} \cdot 9,44e^{j34.5^{\circ}}}{26,758 + j17,568} = 3,259 + j2,095 = 3,87e^{j32.74^{\circ}} \text{ Om},$$

$$\frac{Z'_{B}}{Z'_{AB} + Z'_{BC} + Z'_{CA}} = \frac{9,44e^{j34.5^{\circ}} \cdot 13,14e^{j31.5^{\circ}}}{26,758 + j17,568} = 3,259 + j2,095 = 3,87e^{j32.74^{\circ}} \text{ Om},$$

$$\frac{Z'_{C}}{Z'_{AB} + Z'_{BC} + Z'_{CA}} = \frac{9,44e^{j34.5^{\circ}} \cdot 9,44e^{j34.5^{\circ}}}{26,758 + j17,568} = 2,26 + j1,628 = 2,79e^{j35.77^{\circ}} \text{ Om}.$$

$$\frac{A \Theta}{Z_{LA} + Z'_{A}} = \frac{O'_{AB}}{Z'_{AB} + Z'_{AB} + Z'_{AB}} = \frac{0}{2},26 + j1,628 = 2,79e^{j35.77^{\circ}} \text{ Om}.$$

$$\frac{A \Theta}{Z_{LB} + Z'_{BC}} = \frac{O'_{AB}}{Z'_{AB} + Z'_{A} + Z'_{A}} = \frac{O'_{AB}}{26,758 + j17,568} = 2,26 + j1,628 = 2,79e^{j35.77^{\circ}} \text{ Om}.$$

$$\frac{A \Theta}{Z_{LA} + Z'_{A} + Z''_{A} +$$

1.7. Полученную цепь преобразуем в упрощенную «звезду» (рис. 3.6). Полные сопротивления фаз цепи, показанной на рис. 3.6:

$$\underline{Z}_{A} = \underline{Z}_{LA} + \underline{Z}_{A}^{'} = 10 + j10 + 3,259 + j2,095 = 13,259 + j12,095 = 17,947e^{j42,37^{0}}$$
Ом,

$$\underline{Z}_{B} = \underline{Z}_{LB} + \underline{Z}_{B}^{'} = 5 + 3,259 + j2,095 = 8,259 + j2,095 = 8,521e^{j14,28^{0}}$$
Ом,

$$\underline{Z}_{C} = \underline{Z}_{LC} + \underline{Z}_{C}^{'} = -j15 + 2,26 + j1,628 = 2,26 - j13,372 = 13,56e^{-j80,41^{0}}$$
Ом.
Соответствующие полные проводимости:

$$\underline{Y}_{A} = \frac{1}{27} = -\frac{1}{12} = 0,04116 - j0,03755 = 0,056e^{-j42,37^{0}}$$
См,

$$\underline{\underline{Y}}_{A} = \frac{1}{\underline{\underline{Z}}_{A}} = \frac{1}{17,947e^{j42,37^{0}}} = 0,04116 - j0,03755 = 0,056e^{-j42,37} \quad C_{M}$$

$$\underline{\underline{Y}}_{B} = \frac{1}{\underline{\underline{Z}}_{B}} = \frac{1}{8,521e^{j4,23^{0}}} = 0,11376 - j0,02885 = 0,117e^{-j4,23^{0}} \quad C_{M},$$

$$\underline{\underline{Y}}_{C} = \frac{1}{\underline{\underline{Z}}_{C}} = \frac{1}{13.56e^{-j80.41^{0}}} = 0.01228 + J0.07271 = 0.073e^{j80.41^{0}} \quad C_{M}.$$

1.8. Рассчитаем упрощенную цепь по схеме «звезда».

Нагрузка фаз – несимметрична, поэтому найдем напряжение смещения нейтрали:

$$\overset{\bullet}{U}_{00^{"}} = \frac{\overset{\bullet}{E}_{A} \underbrace{Y}_{A} + \overset{\bullet}{E}_{B} \underbrace{Y}_{B} + \overset{\bullet}{E}_{C} \underbrace{Y}_{C}}{\underbrace{Y}_{A} + \underbrace{Y}_{B} + \underbrace{Y}_{C}}.$$

Так как генератор симметричен, фазные ЭДС равны:

$$\dot{E}_A = 380 \ V, \ \dot{E}_B = 380e^{-j120^0} = -190 - j329 \ B, \ \dot{E}_C = 380e^{j120^0} = -190 + j329 \ B,$$

 $\dot{U}_{OO} = \frac{380 \cdot 0.056e^{-j42.37^0} + 380e^{-j120^0} \cdot 0.117e^{-j14.23^0} + 380e^{j120^0} \cdot 0.073e^{j80.41^0}}{0.04116 - j0.03755 + 0.11376 - j0.02885 + 0.01228 + j0.07271} =$
 $= \frac{-41.72 - j55.989}{0.1672 + j0.00631} = -261.79 - j324.98 \ B.$
Рассчитаем падения напряжения в линейных проводах
 $\dot{U}_A = \dot{E}_A - \dot{U}_{OO} = 380 + 261.79 + j324.98 = 641.79 + j324.98 = 719.3e^{j26.8^0} \ B,$

$$U_B = E_B - U_{00} = -190 - j329 + 361.79 + j324.98 = 71.79 - j4.02 = 71.9e^{-j3.2} \quad B,$$

$$U_C = E_C - U_{00} = -190 + j329 + 361.79 + j324.98 = 71.79 + j653.98 = 657.9e^{j83.7^0} \quad B$$

Тогда токи в линейных проводах равны

$$\overset{"}{I}_{A} = \overset{"}{U}_{A} \cdot \underline{Y}_{A} = 719,3e^{j26,8^{0}} \cdot 0,056e^{-j42,37^{0}} = 40,08e^{-j15,5^{0}} = 38,623 - j10,722 \text{ A},$$

$$\overset{"}{I}_{B} = \overset{"}{U}_{B} \cdot \underline{Y}_{B} = 71,9e^{-j3,2^{0}} \cdot 0,117e^{-j4,23^{0}} = 8,43e^{-j17,4^{0}} = 8,051 - j2,528 \text{ A},$$

$$\overset{"}{I}_{C} = \overset{"}{U}_{C} \cdot \underline{Y}_{C} = 657,9e^{j83,7^{0}} \cdot 0,073e^{j80,41^{0}} = 48,51e^{j164^{0}} = -46,666 + j13,255 \text{ A}.$$

1.9. Рассчитаем падения напряжений на линейных проводах:

$$\dot{U}_{La} = I_A \cdot \underline{Z}_{La} = 40.08 e^{-j15.5^{\circ}} \cdot 14.14 e^{j45^{\circ}} = 566.8 e^{j29.4^{\circ}} = 493 + j279 \quad B_{3}$$

$$\dot{U}_{Lb} = I_B \cdot \underline{Z}_{Lb} = 8.93 e^{-j17.4^{\circ}} \cdot 5 = 42.19 e^{-j17.4^{\circ}} = 40.255 - j12.64 \quad B,$$

$$\dot{U}_{Lc} = I_C \cdot \underline{Z}_{Lc} = 48.51 e^{j164^{\circ}} \cdot 15 e^{-j90^{\circ}} = 727.6 e^{j74^{\circ}} = 198.8 + j700 \quad B.$$

1.10. Фазные напряжения в «звезде» ($\underline{Z}_{A}, \underline{Z}_{B}, \underline{Z}_{C}$):

$$\dot{U}_{A} = I_{A} \underline{Z}_{A} = 40.08 e^{-j15.5^{\circ}} \cdot 3.87 e^{j32.74^{\circ}} = 155.3 e^{j17.2^{\circ}} = 148.3 + j45.97 \quad B,$$

$$\dot{U}_{B} = I_{B} \underline{Z}_{B} = 8.43 e^{-j17.4^{\circ}} \cdot 3.87 e^{j32.74^{\circ}} = 32.69 e^{j15.3^{\circ}} = 31.53 + j8.628 \quad B,$$

$$\dot{U}_{C} = I_{C} \underline{Z}_{C} = 48.51 e^{j164^{\circ}} \cdot 2.79 e^{j35.77^{\circ}} = 135 e^{-j160^{\circ}} = -127 - j46 \quad B.$$

1.11. Используя второй закон Кирхгофа, рассчитаем линейные напряжения в «треугольнике» первоначальной цепи:

$$\dot{U}_{ab} = \dot{I}_A \underline{Z}_A - \dot{I}_B \underline{Z}_B = \dot{U}_A - \dot{U}_B = 148.3 + j45.97 - 31.53 - j8.628 = 116.72 + j37.342 ==$$

$$= 122.6e^{j17.73^0} B,$$

$$\dot{U}_{bc} = \dot{I}_B \underline{Z}_B - \dot{I}_C \underline{Z}_C = \dot{U}_B - \dot{U}_C = 31.533 + j8.628 + 127 + j46 = 158.53 + j54.628 =$$

$$= 167.7e^{j19^0} B,$$

$$\dot{U}_{cb} = \dot{I}_C \underline{Z}_C - \dot{I}_A \underline{Z}_A = \dot{U}_C - \dot{U}_A = -127 - j46 - 148.3 - j45.97 = -275.3 - j91.97 =$$

$$= 290.3e^{-101.5}$$
 B.

1.12. Рассчитаем токи в фазах «треугольника»:

$$\dot{I}_{ab} = \frac{U_{ab}}{\underline{Z}_{ab}} = \frac{122,6e^{j17,73^{0}}}{11,31e^{j45^{0}}} = 10,83e^{-j27,27^{0}} = 9,632 - j4,964 \quad A,$$

$$\dot{I}_{bc} = \frac{\dot{U}_{bc}}{\underline{Z}_{bc}} = \frac{166,7e^{j19^{0}}}{11.,1e^{j45^{0}}} = 14.82e^{-j25.9^{0}} = 13.322 - j6.494 \quad A,$$

$$\dot{I}_{ca} = \frac{\dot{U}_{ca}}{\underline{Z}_{ca}} = \frac{290.3e^{-j161.5^{0}}}{11.31e^{j45^{0}}} = 25.65e^{j1534^{0}} = -22.954 + j11.458 \quad A.$$

1.13. Рассчитаем токи в линейных проводах, присоединенных к «треугольнику»:

$$\dot{I}_A = \dot{I}_{ab} - \dot{I}_{ca} = 9,632 - j4,964 + 22,954 - j11,458 = 32,586 - j16,422 = 36,49e^{-j26,7^0}$$
 A,
 $\dot{I}_B = \dot{I}_{bc} - \dot{I}_{ab} = 13,322 - j6,494 - 9,632 + j4,964 = 3,69 - j1,53 = 3,99e^{-j22,5^0}$ A,
 $\dot{I}_C = \dot{I}_{ca} - \dot{I}_{bc} = -22,954 + j11,458 - 13,322 + j6,494 = -36,276 + j17,952 = 40,47e^{j1536^0}$ A.
1.14. Рассчитаем фазные напряжения в первоначальной «звезде»:

$$\dot{U}_{a} = \frac{\dot{U}_{ab} \cdot \underline{Y}_{b} - \dot{U}_{ca} \cdot \underline{Y}_{c}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} = \frac{122.6e^{j17.73^{0}} \cdot 0.0588e^{j28.02^{0}} - 290.3e^{-j161.5^{0}} \cdot 0.064e^{-j50.19^{0}}}{0.1447 - j0.0064} =$$

$$= 147.3e^{-j10^{0}} = 145.1 - j25.36 \quad B,$$

$$\dot{U}_{b} = \frac{\dot{U}_{bc} \cdot \underline{Y}_{c} - \dot{U}_{ab} \cdot \underline{Y}_{a}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} = \frac{166.7e^{j19^{0}} \cdot 0.064e^{-j50.19^{0}} - 122.6e^{j17.73^{0}} \cdot 0.0588e^{j28.02^{0}}}{0.1447 - j0.0064} =$$

$$= 79.43e^{-j66.3^{0}} = 31.94 - j72.72 \quad B,$$

$$\dot{U}_{c} = \frac{\dot{U}_{ca} \cdot \underline{Y}_{a} - \dot{U}_{bc} \cdot \underline{Y}_{b}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} = \frac{290.3e^{-j161.5^{0}} \cdot 0.0588e^{j28.02^{0}} - 167.7e^{j19^{0}} \cdot 0.0588e^{j28.02^{0}}}{0.1447 - j0.0064} =$$

$$= 186e^{-j130^{0}} = -121.3 - j140.9 \quad B.$$

1.15. Рассчитаем фазные токи в первоначальной «звезде»:

$$\dot{I}_{a} = \frac{\dot{U}_{a}}{\underline{Z}_{a}} = \frac{147,3e^{-j10^{0}}}{17e^{-j28,07^{0}}} = 8,66e^{j18^{0}} = 8,233 + j2,7 \text{ A},$$

$$\dot{I}_{b} = \frac{\dot{U}_{b}}{\underline{Z}_{b}} = \frac{79,43e^{-j66,3^{0}}}{17e^{-j28,07^{0}}} = 4,67e^{-j38,2^{0}} = 3,671 - j2,89 \text{ A},$$

$$\dot{I}_{c} = \frac{\dot{U}_{c}}{\underline{Z}_{c}} = \frac{186e^{-j130^{0}}}{15,62e^{j50,19^{0}}} = 11,9e^{-j179^{0}} = -11,9 + j0,19 \text{ A}.$$

1.16. Рассчитаем напряжения смещения нейтрали первоначальной «звезды»:

$$\dot{U}_{00'} = \dot{E}_A - \dot{U}_{La} - \dot{U}_a = 380 - 493 - j279 - 145.1 + j25.36 = -258.1 - j253.64 =$$

= 361.8e^{-j135°} B.

2. Определим показания амперметров, используя результаты п.1.13.

$$I_{A_1} = I_A = 40,08$$
 A, $I_{A_2} = I_B = 8,43$ A, $I_{A_3} = I_C = 48,51$ A.

3. Рассчитаем мощности нагрузок.

3.1 Нагрузка «звезда»:

$$\tilde{S}_{star} = \tilde{S}_a + \tilde{S}_b + \tilde{S}_c$$
,
 $\tilde{S}_a = P_a + jQ_a = I_a^2 R_a + jI_a^2 x_a = (8.66)^2 \cdot 15 + j(8.66)^2 \cdot (-8) = 1124.9 - j600 BA$,
 $\tilde{S}_b = P_b + jQ_b = I_b^2 R_b + jI_b^2 x_b = (4.67)^2 \cdot 15 + j(4.67)^2 \cdot (-8) = 327.13 - j174.47 BA$,
 $\tilde{S}_c = P_c + jQ_c = I_c^2 R_c + jI_c^2 x_c = (11.9)^2 \cdot 10 + j(11.9)^2 \cdot 12 = 1416.1 + j1699.32 BA$,
 $\tilde{S}_{star} = 2868.13 + j924.85 BA$.
3.2. Нагрузка «треугольник»:

$$\begin{split} \tilde{S}_{\Lambda} &= \tilde{S}_{ab} + \tilde{S}_{bc} + \tilde{S}_{ca} \\ \tilde{S}_{ab} &= P_{ab} + jQ_{ab} = I_{ab}^{2}R_{ab} + jI_{ab}^{2}x_{ab} = (10.83)^{2} \cdot 8 + j(10.83)^{2} \cdot 8 = 938.31 + \\ + j938.31 \ BA, \\ \tilde{S}_{bc} &= P_{bc} + jQ_{bc} = I_{bc}^{2}R_{bc} + jI_{bc}^{2}x_{bc} = (14.82)^{2} \cdot 8 + j(14.82)^{2} \cdot 8 = 1757.1 + \\ + j1757.1 \ BA, \\ \tilde{S}_{ca} &= P_{ca} + jQ_{ca} = I_{ca}^{2}R_{ca} + jI_{ca}^{2}x_{ca} = (25.65)^{2} \cdot 8 + j(25.65)^{2} \cdot 8 = 5263.38 + \\ + j5263.38 \ BA \\ \tilde{S}_{\Delta} &= 7958.79 + j7958.79 \ BA. \\ 3.3 \ \ Mouthoortb B \ nuhed haix npoBogax: \\ \tilde{S}_{L} &= \tilde{S}_{La} + \tilde{S}_{Lb} + \tilde{S}_{Lc}, \\ \tilde{S}_{La} &= P_{La} + jQ_{La} = I_{A}^{2}R_{La} + jI_{A}^{2}x_{La} = (40.08)^{2} \cdot 10 + (40.08)^{2} \cdot 10 = 16064 + j16064 \ BA, \\ \tilde{S}_{Lb} &= P_{Lb} + jQ_{Lb} = I_{B}^{2}R_{Lb} = (8.43)^{2} \cdot 5 = 355.32 \ BA, \\ \tilde{S}_{Lc} &= P_{Lc} + jQ_{Lc} = -jI_{C}^{2}x_{Lc} = -j(48.51)^{2} \cdot 15 = -j35298.3 \ BA, \\ \tilde{S}_{L} &= 16419.32 - j19234.3 \ BA. \\ 3.4 \ \ \ Honmas monupoortb harpysok: \\ \tilde{S}_{load} &= \tilde{S}_{star} + \tilde{S}_{\Delta} + \tilde{S}_{L} = 2868.13 + j924.85 + 7958.79 + j7958.79 + 16419.32 - j19951 = \\ = 27246.24 - j11067.4 = 29408e^{-j22.1^{0}} \ BA. \\ 3.5 \ \ PaccurraeM monupoortb harpysok: \\ \tilde{S}_{source} &= \tilde{S}_{A} + \tilde{S}_{B} + \tilde{S}_{C} = \tilde{E}_{A} \cdot \tilde{I}_{A} + \tilde{E}_{B} \cdot \tilde{I}_{B} + \tilde{E}_{C} \cdot \tilde{I}_{C} = 380 \cdot 40.08e^{j16^{O}} + \\ + 380e^{-j120^{O}} \cdot 8.4e^{j17^{O}} + 380e^{j120^{O}} \cdot 48.51e^{-j163^{O}} = 15230e^{j16^{O}} + 3192e^{-j103^{O}} + \\ + 18430e^{-j43^{O}} = 14640 + j4197 - 718 - j3110 + 13478 - j12569 = 27400 - j11482 = \\ = 29708e^{-j22.7^{O}} \ BA \\ 3.6 \ \ H pobepum binonherule cananca monupocru : \\ \end{array}$$
$$\begin{split} \delta_P &= \frac{P_{source} - P_{load}}{P_{source}} 100\% = \frac{27400 - 27246}{27400} 100\% \cong 0,5\%, \\ \delta_Q &= \frac{Q_{source} - Q_{load}}{Q_{source}} 100\% = \frac{11482 - 11067,4}{11482} 100\% \cong 3\%. \end{split}$$

4. Определим показания ваттметров

$$P_{W_1} = \operatorname{Re}\begin{bmatrix} \bullet & * \\ U_{AB} & I_A \end{bmatrix},$$

$$\begin{split} & \overset{\bullet}{U}_{AB} = \overset{\bullet}{E}_{A} - \overset{\bullet}{E}_{B} = 570 + j329 = 658e^{j30^{O}} \quad B \quad \left(E_{AB}\right), \\ & P_{W_{1}} = \operatorname{Re} \left[658e^{j30^{O}} \cdot 40.08e^{j15.5^{O}} \right] = 658 \cdot 40.08 \cdot \cos 45.5^{O} = 18484.8 \quad Bm, \\ & P_{W_{2}} = \operatorname{Re} \left[\overset{\bullet}{U}_{CB} \overset{*}{I}_{C} \right], \\ & \overset{\bullet}{U}_{CB} = \overset{\bullet}{E}_{C} - \overset{\bullet}{E}_{B} = 658e^{j90^{O}} \quad B \quad \left(-E_{BC}\right), \\ & P_{W_{2}} = \operatorname{Re} \left[658e^{j90^{O}} \cdot 48.51e^{-j164^{O}} \right] = 658 \cdot 48.51 \cdot \cos\left(-74^{O}\right) = 8798 \quad Bm. \end{split}$$

5. Построим топографическую диаграмму напряжений и токов на комплексной плоскости (рис. 3.7).

Рис. 3.7

<u>ЗАДАНИЕ № 4</u>

РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Заданы разветвленные электрические цепи: с одним (рис. 4.1-4.12) и двумя (рис. 4.13-4.80) реактивными элементами; с нулевыми (рис. 4.13 – 4.40) и ненулевыми (рис. 4.41-4.80) начальными условиями; схемы повышенной сложности (рис. 4.81-4.90), предназначенный для УИРС. На всех схемах указан вид коммутации, вызывающий переходный процесс.

Параметры элементов схем, приведенных на рис. 4.1 – 4.80 выбираются из таблицы 4.1.

Требуется:

- 1. Рассчитать переходный процесс в заданной цепи классическим методом.
- 2. Рассчитать переходный процесс в заданной цепи операторным (либо другим указанным преподавателем) методом.
- 3. Построить графики изменения во времени токов в ветвях цепи и напряжений на реактивных элементах.

Раздел УИРС. Выполнить расчет переходного процесса двумя методами по указанию преподавателя для одной из схем, приведенных на рис. 4.81-4.90.

Варианты домашнего задания

Таблица 4.1

-		Iupunei			next pit		(UIIII	
№ вари- анта	U	R_1	<i>R</i> ₂	<i>R</i> ₃	L_1	L_2	<i>C</i> ₁	<i>C</i> ₂
	В		Ом		Гн		мкФ	
1	200	100	50	200	1,0	0,5	50	100
2	100	125	75	50	0,4	0,2	20	40
3	120	100	100	125	0,2	0,1	20	40
4	50	150	75	50	0,5	0,2	25	50
5	75	50	75	125	0,2	0,1	0,2	0,1
6	50	800	1000	1000	0,25	0,5	0,2	0,1
7	75	800	2000	1000	0,25	0,5	0,1	0,2
8	100	1500	500	1000	0,4	0,8	0,1	0,2
9	120	50	125	50	0,2	0,4	20	10
10	200	200	125	50	0,4	0,2	125	80
11	240	100	50	200	0,5	1,0	50	125
12	240	200	100	100	0,1	0,5	100	50
13	50	800	1000	2000	0,25	0,50	0,1	0,2
14	240	200	100	100	0,8	0,4	100	50
15	150	50	125	50	0,4	0,2	10	20

Параметры элементов электрической цепи

16	150	50	125	50	0,2	0,4	20	10
17	100	100	50	100	0,5	0,1	100	50
18	100	200	100	100	0,4	0,8	80	125
19	110	800	1000	1000	0,5	0,25	0,1	0,2
20	50	800	1000	2000	0,25	0,5	0,2	0,1
21	110	125	50	75	0,2	0,1	40	20
22	100	125	50	100	0,1	0,2	20	40
23	50	100	50	100	0,5	0,1	50	100
24	50	100	50	100	0,5	1,0	125	80
25	50	100	50	200	0,5	1,0	100	50

ø

U

ø

Рис.4.7

Рис.4.9

Рис.4.73

Рис.4.74

Рис.4.75

Рис.4.78

Рис.4.79

 R_2

 L_2

ПРИМЕР РАСЧЕТА

Рассчитаем цепь, показанную на рис. 4.91. Численные данные для данной схемы приведены в табл. 4.2.

Таблица 4.2

U_0	R_0	R_1	R_2	L	С
В	Ом	Ом	Ом	Гн	мкФ
150	100	300	200	0,1	10

1. Классический метод

1. Пусть t = 0 – момент коммутации.

2. Ток *i*_L выбираем в качестве искомой переменной, т.к. этот ток подчиняется законам коммутации.

3. Рассчитаем токи до коммутации, т.е. при $t \le -0$.

Цепь содержит резистор R_0 . Постоянный ток через конденсатор не проходит, поэтому $i_C(-0) = 0$,

$$i_L(-0) = \frac{U_0}{R_0 + R_1 + R_2} = \frac{150}{100 + 300 + 200} = 0.25 \text{ A},$$

 $i_2(-0) = i_L(-0) = 0.25 \text{ A}, \quad u_C(-0) = R_2 i_2(-0) = 200 \cdot 0.25 = 50 \text{ B}.$

4. Используя законы Кирхгофа, запишем уравнения для времени после коммутации $(t \ge 0)$

$$i_{L} - i_{2} - i_{C} = 0,$$

$$L \frac{di_{L}}{dt} + R_{1}i_{L} + R_{2}i_{2} = U_{0},$$

$$-R_{2}i_{2} + u_{C} = 0,$$

$$i_{C} = C \frac{du_{C}}{dt}.$$
(4.1)

Приведем данную систему к одному дифференциальному уравнению, в котором фигурировала бы только одна переменная - ток i_L (или напряжение u_C), т. к. эти переменные не изменяются в момент коммутации, поэтому при решении дифференциального уравнения в качестве начальных условий можно использовать их значения, которые они принимают до коммутации t = -0. Исключая переменные i_2 , i_C , u_C , из системы (4.1) получим требуемое дифференциальное уравнение второго порядка:

$$\frac{d^{2}i_{L}}{dt^{2}} + \left(\frac{1}{R_{1}L} + \frac{1}{R_{2}C}\right)\frac{di_{L}}{dt} + \frac{1}{LC}\left(1 + \frac{R_{1}}{R_{2}}\right)i_{L} = \frac{1}{LC}\frac{U_{0}}{R_{2}}.$$
(4.2)

5. Рассчитаем новый установившийся режим цепи ($t \rightarrow \infty$):

$$i' = \frac{U_0}{R_1 + R_2} = \frac{155}{300 + 200} = 0,3 \text{ A}, \qquad i'_L = i'_2 = 0,3 \text{ A}, \qquad i'_C = 0,$$

 $u'_C = R_2 i'_2 = 200 \cdot 0,3 = 60 \text{ B}.$

6. Найдем начальные условия для искомой переменной и ее производной:

$$i_L(+0)$$
 и $\frac{di_L}{dt}\Big|_{t=+0}$. Согласно законам коммутации имеем
 $i_L(-0) = i_L(+0) = 0,25$ A, $u_C(-0) = u_C(+0) = 50$ B.

После подстановки этих величин в систему (4.1), записанную для момента времени t = +0, получим систему алгебраических уравнений относительно переменных:

$$i_{2}(+0), \quad i_{C}(+0), \quad \frac{di_{L}}{dt} \bigg|_{t=+0}, \quad \frac{du_{C}}{dt} \bigg|_{t=+0}.$$

$$\begin{cases} -i_{2}(+0) - i_{C}(+0) = -0.25, \\ \frac{di_{L}}{dt} \bigg|_{t=+0} + \frac{R_{2}}{L} i_{2}(+0) = \frac{U_{0}}{L} - \frac{R_{1}}{L} \cdot 0.25, \\ -R_{2}i_{2}(+0) = -50, \\ i_{C}(+0) - C\frac{du_{C}}{dt} \bigg|_{t=+0} = 0. \end{cases}$$

Решая эту систему, определим недостающее начальное условие:

$$\frac{di_L}{dt}\Big|_{t=+0} = 250 \text{ A/c}$$
(4.3)

Одновременно найдем: $i_2(+0) = 0,25$ A, $i_C(+0) = 0, \frac{du_C}{dt}\Big|_{t=+0} = 0.$

7. Подставим численные данные в уравнение (4.2) и решим его

$$\frac{d^2 i_L}{dt^2} + 3500 \frac{d i_L}{dt} + 2,5 \cdot 10^6 i_L = 7,5 \cdot 10^5, \qquad (4.4)$$

Решение неоднородного дифференциального уравнения (4.4) запишем как сумму частного решения $i_L^{/}$ и общего решения $i_L^{/\prime}$ однородного уравнения:

$$i_L = i'_L + i''_L$$
 (4.5)

Решение однородного уравнения, называемое свободным током, записывается следующим образом:

$$i_L^{\prime\prime} = A_1 e^{p_1 t} + A_2 e^{p_2 t} . (4.6)$$

где A_1 и A_2 – постоянные интегрирования; p_1 и p_2 – корни характеристического уравнения:

$$p^2 + 3500p + 2,5 \cdot 10^6 = 0.$$

Решаем это уравнение и находим:

$$p_1 = -2500 \ \frac{1}{c}, \quad p_2 = -1000 \ \frac{1}{c}.$$

Корни должны быть отрицательными числами, если корни получились комплексными, то они должны иметь отрицательную вещественную часть.

Решение (4.5) с учетом п.5 запишем следующим образом:

$$i_L = i'_L + i''_L = 0,3 + A_1 e^{-2500} + A_2 e^{-1000}.$$
 (4.7)

Продифференцируем это уравнение:

$$\frac{di_L}{dt} = -2500A_1 e^{-2500} - 1000 e^{-1000}.$$
(4.8)

8. Вычислим постоянные интегрирования A_1 и A_2 . Для этого запишем (4.7) и (4.8) для времени t = +0, подставив в них численные значения начальных условий.

$$\begin{cases} 0,25 = 0,3 + A_1 + A_2, \\ 250 = -2500A_1 - 1000A_2 \end{cases}$$

Решая эту систему, найдем: $A_1 = -0.133$, $A_2 = 0.083$. Подставим вычисленные величины в правую часть уравнения (4.7) и получим решение

$$i_L = 0.3 - 0.133 e^{-2500} + 0.083 e^{-1000}$$
 A. (4.9)

9. Расчет остальных токов и напряжений на реактивных элементах и построение графиков.

Подставим (4.9) в систему (4.1) и найдем остальные токи:

$$i_{2} = \frac{1}{R_{2}} \left[U_{0} - R_{1}i_{L} - L\frac{di_{L}}{dt} \right] = 0,3 + 0,033e^{-2500} - 0,083e^{-1000} \quad A,$$
$$i_{C} = i_{L} - i_{2} = -0,166e^{-2500} + 0,166e^{-1000} \quad A,$$

и напряжения на конденсаторе и на катушки индуктивности:

$$u_C = R_2 i_2 = 60 + 6,6e^{-2500} - 16,6e^{-1000}$$
 B
 $u_L = L \frac{di_L}{dt} = 33,25e^{-2500} - 8,3e^{-1000}$ B.

Данные расчетов сведены в табл. 4.3. На рис. 4.92 приведены соответствующие графики на временном интервале:

$$0 \le t \le \frac{3 \div 5}{|p_{1,2}|_{\min}} = 0,003 \div 0,005 \text{ c.}$$

Величина временного интервала выбирается равной $(3 \div 5)$ т, где $\tau = \frac{1}{|p_{1,2}|_{\min}}$, если корни характеристического уравнения вещественные чис-

ла, в случае комплексных корней расчет выполняется на временном интервале, равном не менее трем периодам колебаний токов и напряжений.

Таблица 4.3

N⁰	t	$i_L(t)$	$i_2(t)$	$i_C(t)$	$u_C(t)$
	с	А	А	А	В
1	+0	0,260	0,250	0	50,0
2	$0,4 \cdot 10^{-3}$	0,307	0,256	0,050	51,3
3	0,8.10-3	0,319	0,267	0,052	53,2
•				•	•
•	•	•	•	•	
•	•	•	•	•	
8	$3,0.10^{-3}$	0,304	0,296	0,008	59,2

Задачу можно было решить, не решая дифференциального уравнения (4.3). Общее решение для тока может быть сразу представлено в виде:

$$i_L = A_1 \mathbf{e}^{p_1 t} + A_2 \mathbf{e}^{p_2 t} + i^{\prime}$$

Дифференциальное уравнение не решается. Корни характеристического уравнения определяются, используя матрицу контурных сопротивлений:

det Z(p)=det
$$\begin{bmatrix} pL+R_1+R_2 & -R_2 \\ -R_2 & R_2+1/pC \end{bmatrix} = 0$$
$$= det \begin{bmatrix} 0,1p+500 & -200 \\ -200 & 200+10^5/p \end{bmatrix} = 0$$

или матрицу узловых проводимостей ($\det \mathbf{Y}(p) = 0$). Источник напряжения закорочен.

$$\det Y(p) = \frac{1}{R_2} + pC + \frac{1}{pL + R_2} =$$
$$= \frac{1}{200} + 10^{-5} p + \frac{1}{0,1p + 300} = 0.$$

Оба уравнения дают одно и тоже решение:

$$p_1 = -2500 \ \frac{1}{c}, \quad p_2 = -1000 \ \frac{1}{c}.$$

Затем можно записать

$$i_L = A_1 e^{-2500t} + A_2 e^{-1000t} + 0.3, \quad \frac{di_L}{dt}$$

Дальнейшее решение совпадает с рассмотренным ранее.

2. Операторный метод Рассчитаем началь-

ные условия для переменных:

$$i_L(-0) = 0,25 \text{ A} = i_L(+0)$$

$$u_C(-0) = 50 \text{ B} = u_C(+0)$$

Эти величины использу-

ются при написании уравнений цепи в операторной форме. Согласно зако-

нам Кирхгофа запишем следующую систему уравнений в операторной форме:

$$\begin{cases} I_{L}(p) - I_{C}(p) - I_{2}(p) = 0, \\ pLI_{L}(p) - Li_{L}(0) + R_{2}I_{2}(p) = \frac{U_{0}}{p}, \\ \frac{1}{pC}I_{L}(p) + \frac{u_{C}(+0)}{p} - R_{2}I_{2}(p) = 0. \end{cases}$$

Подставим численные значения в данную систему

ſ

$$\begin{cases} I_{L}(p) - I_{C}(p) - I_{2}(p) = 0, \\ 0,1pI_{L}(p) - 0,025 + 300i_{L}(0) + 200I_{2}(p) = \frac{150}{p}, \\ \frac{10^{5}}{p}I_{L}(p) + \frac{50}{p} - 200I_{2}(p) = 0. \end{cases}$$

Приведем систему к операторному уравнению относительно операторного тока $I_L(p)$ и сравним с ранее полученным решением

$$I_{L}(p) = \frac{A(p)}{B(p)} = \frac{0.25 p^{2} + 1125 p + 0.75 \cdot 10^{6}}{p(p^{2} + 3500 p + 2.5 \cdot 10^{6})},$$

где A(p) – полином числителя и B(p) – полином знаменателя.

Рекомендуется проверить правильность полученного уравнения с помощью пределов:

$$i_{L}(+0) = \lim_{p \to \infty} pI_{L}(p) = \lim_{p \to \infty} p \frac{0.25 p^{2} + 1125 p + 0.75 \cdot 10^{6}}{p(p^{2} + 3500 p + 2.5 \cdot 10^{6})} = \frac{0.25}{1} = 0.25 \text{ A},$$

$$i_{L}' = i_{L}(\infty) = \lim_{p \to 0} pI_{L}(p) = \lim_{p \to 0} p \frac{0.25 p^{2} + 1125 p + 0.75 \cdot 10^{6}}{p(p^{2} + 3500 p + 2.5 \cdot 10^{6})} = \frac{0.75 \cdot 10^{6}}{2.5 \cdot 10^{6}} = 0.3 \text{ A}.$$

Рассчитанные токи $i_L(+0)$ и i'_L совпадают с соответствующими токами, полученными по классическому методу.

Чтобы рассчитать ток $i_L(t)$ будем использовать теорему разложения:

$$i_L(t) = \sum_{k=1}^n \frac{A(p_k)}{B'(p_k)} e^{p_k t}$$

$$(4.10)$$

1. Найдем корни из уравнения В(р)=0

$$p(p^{2} + 3500p + 2.5 \cdot 10^{6}) = 0.$$

$$p_{1} = -2500 \frac{1}{c}, \quad p_{2} = -1000 \frac{1}{c}, \quad p_{3} = 0$$

2. Произведем дифференцирование

$$B'(p) = \frac{dB(p)}{dp} = 3p^2 + 7000p + 2.5 \cdot 10^6.$$

3. Рассчитаем коэффициент $\frac{A(p)}{B'(p)}$ для корня $p_1 = -2500 \frac{1}{c}$: $\frac{A(p_1)}{B'(p_1)} = \frac{0.25(-2500)^2 + 1125(-2500) + 0.75 \cdot 10^6}{3(-2500)^2 + 7000(-2500) + 2.5 \cdot 10^6} = -0.133$ А.

4. Рассчитаем коэффициент $\frac{A(p)}{B'(p)}$ для корня $p_2 = -1000 \frac{1}{c}$:

$$\frac{A(p_2)}{B'(p_2)} = \frac{0.25(-1000)^2 + 1125(-1000) + 0.75 \cdot 10^6}{3(-1000)^2 + 7000(-1000) + 2.5 \cdot 10^6} = -0.083 \text{ A}$$

5. Рассчитаем коэффициент $\frac{A(p)}{B'(p)}$ для корня $p_3 = 0$:

$$\frac{A(p_3)}{B'(p_3)} = \frac{0.75 \cdot 10^6}{2.5 \cdot 10^6} = -0.3 \text{ A}.$$

6. Используя (4.10) получаем формулу для тока:

$$i_L = 0.3 - 0.133 e^{-2500} + 0.083 e^{-1000}$$
 A

Эта формула совпадает с выражением (4.9) для $i_L(t)$, полученным классическим методом. Токи в других ветвях и напряжение на реактивных элементах получают по аналогии.

3. Метод переменных состояния

При составлении уравнений состояния с помощью законов Кирхгофа для уменьшения промежуточных преобразований рекомендуется для ин-

дуктивности использовать переменные i_L и $L \frac{di_L}{dt}$ (для напряжения), для

емкости - u_C и $C \frac{du_C}{dt}$ (для тока). Следует также уравнения по возмож-

ности записывать так, чтобы в каждое из них входило не более одной производной от переменной состояния. После составления уравнений по законам Кирхгоффа из них исключают все алгебраические переменные, т.е. переменные, не являющиеся переменными состояния.

Соблюдая сказанное, непосредственно по схеме запишем систему уравнений:

$$\begin{cases} i_{L} = i_{2} + C \frac{du_{C}}{dt}, \\ L \frac{di_{L}}{dt} + R_{1}i_{L} + u_{C} = U_{0}, \\ R_{2}i_{2} = u_{C}. \end{cases}$$

Здесь i_2 - алгебраическая переменная. После ее исключения получаем систему в виде:

di _L ∕dt	_	-R1/L	-1/L	iL	+	
duc∕dt	_	1/C	-1/R ₂ C	u _c		

(4.11)

После подстановки численных значений параметров элементов цепи система (4.11) принимает вид

при

Корни характеристического уравнения $det(1p - A) = p^2 + 3500p + 2,5 \cdot 10^6 = 0$ совпадают с ранее найденными значениями: $p_1 = -2500 \frac{1}{c}$, $p_2 = -1000 \frac{1}{c}$.

Система дифференциальных уравнений решается различными методами численного интегрирования. Интервал интегрирования определяется следующим образом

$$T_{\text{инт.}} \cong (3 \div 5) / |p_k|_{\min} \to 4 / 1000 = 0,005 \text{ c}$$

Если для интегрирования используется явный метод Эйлера, то шаг интегрирования можно принять равным значению $h \cong (0,01 \div 0,1)/|p_k|_{\text{max}}$. В общем случае шаг $h \le 1/||\mathbf{A}||$, где $||\mathbf{A}||$ -одна из норм матрицы **A**. Общее число шагов интегрирования равно

$$N = \frac{T_{\text{инт.}}}{h} \cong \frac{(3 \div 5) |p_k|_{\text{max}}}{(0,01 \div 0,1) |p_k|_{\text{min}}} = (30 \div 500) \frac{|p_k|_{\text{max}}}{|p_k|_{\text{min}}}.$$

Можно видеть, что *N* пропорционально числу обусловленности матрицы **A** и может оказаться весьма большим для жестких систем.

ЗАДАНИЕ №5

РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В НЕЛИНЕЙНЫХ ЭЛЕК-ТРИЧЕСКИХ ЦЕПЯХ

В цепи, содержащей нелинейный элемент (индуктивный, емкостной или резистивный) и находящейся под действием постоянного напряжения, происходит замыкание или размыкание ключа.

Требуется:

1. Найти и построить временные зависимости токов во всех ветвях цепи и напряжения на нелинейном элементе. По указанию преподавателя вместо напряжения на нелинейном элементе может быть предложено построить напряжение на линейном реактивном элементе. Для расчета использовать: метод кусочно-линейной аппроксимации и метод последовательных интервалов (метод Эйлера).

Варианты домашнего задания

Варианты расчетных схем представлены на рис. 5.1 – 5.36, численные значения величин приложенного сопротивления и параметров линейных элементов цепи – в таблице 5.1, характеристики нелинейных элементов – на рис. 5.37 – 5.39.

Первые 16 схем содержат нелинейный реактивный элемент (катушку с ферромагнитным сердечником или вариконд – конденсатор с нелинейным диэлектриком), остальные – нелинейный резистор. Особенности решения задач с нелинейными реактивными и резистивными элементами рассмотрены в методических указаниях.

Рис. 5.2

Рис. 5.5

Рис. 5.4

Рис. 5.8

Рис. 5.10

Рис. 5.12

Рис. 5.14

Рис. 5.19

Рис. 5.21

Рис. 5.16

Рис. 5.18

Рис. 5.20

Рис. 5.22

Рис. 5.25

Рис. 5.29

Рис. 5.26

Рис. 5.28

Рис. 5.30

Рис. 5.35

Рис. 5.32

Рис. 5.34

Рис. 5.36

Таблица 5.1

Create	Dopuque	U	R_1	R_2	R_3	R_4	С	L
Схема	Бариант	В		0	М		мкФ	мГн
	а	400	50	10	2	100	-	-
1	б	600	50	20	2	100	-	-
1	В	500	50	20	5	100	-	-
	Г	800	50	20	2	100	-	-
	а	200	10	10	10	100	-	-
2	б	200	10	10	20	90	-	-
Z	В	300	20	10	20	180	-	-
	Г	400	40	10	50	160	-	-

	а	200	20	-	20	80	-	-
2	б	200	20	-	20	60	-	-
5	В	100	10	-	20	50	-	-
	Г	200	20	-	50	80	-	-
	а	200	10	10	2	-	-	-
1	б	200	20	10	2	-	-	-
4	В	200	20	5	1	-	-	-
	Г	200	10	20	1	-	-	-
	a	200	25	10	5	-	-	-
5	б	200	20	10	2	-	-	-
5	В	200	20	20	2	-	-	-
	Г	200	25	20	6	-	-	-
	a	200	40	25	10	-	-	-
6	б	200	50	25	25	-	-	-
0	В	200	20	20	10	-	-	-
	Г	200	10	20	4	-	-	-
	a	200	40	-	10	-	-	-
7	б	200	40	-	5	-	-	-
/	В	200	25	-	10	-	-	-
	Г	200	25	-	25	-	-	-
	a	200	10	10	10	-	-	-
8	б	200	10	10	5	-	-	-
0	В	200	20	10	10	-	-	-
	Г	200	10	20	10	-	-	-
	a	150	70	-	5	75	-	-
9	б	150	20	-	5	50	-	-
	В	150	10	-	2	88	-	-
	Г	150	40	-	10	200	-	-
	a	150	70	10	5	75	-	-
10	б	150	20	15	5	50	-	-
10	В	150	10	5	2	88	-	-
	Г	150	40	20	10	200	-	-
	a	150	10	20	40	100	-	-
11	б	150	10	5	20	120	-	-
	В	150	5	10	5	140	-	-
	Г	150	10	50	90	200	-	-
	a	150	10	-	40	100	-	-
12	б	150	10	-	20	120	-	-
	В	150	5	-	5	140	-	-
	Г	150	10	-	90	200	-	-
	a	150	30	10	20	-	-	-
13	б	150	50	20	25	-	-	-
	В	150	40	10	10	-	-	-
	Г	150	55	20	20	-	-	-
	a	150	30	10	20	-	-	-
14	б	150	50	20	25	-	-	-
	В	150	40	10	1-	-	-	-

	Г	150	55	20	20	-	-	-
	а	150	10	40	90	-	-	-
15	б	150	20	50	80	-	-	-
15	В	150	40	20	60	-	-	-
	Г	150	25	25	50	-	-	-
	а	150	10	40	90	-	-	-
16	б	150	20	50	80	-	-	-
10	В	150	40	20	60	-	-	-
	Г	150	25	25	50	-	-	-
	а	-200	90	-	10	-	6	-
17	б	-200	190	-	10	-	6	-
1 /	В	-300	30	-	15	-	6	-
	Г	-300	180	-	20	-	6	-
	а	-450	60	-	15	75	10	-
	б	-500	60	_	20	70	10	-
18	В	-450	30	_	15	55	10	_
	Г	-450	30	_	20	100	10	_
	a	400	10	_	40	50	5	_
	б	250	15	_	60	225	5	_
19	B	400	20	_	60	160	5	_
	Г	500	20	_	30	100	5	_
	a	200	12	_	4	1000	8	_
	б	240	12	_	3	1200	8	_
20	B	240	16	_	4	1200	8	_
	Г	200	15	_	3	1500	8	_
	a	300	20	_	5	-	10	-
	б	240	12	_	4	_	10	-
21	В	240	15	-	3	_	10	-
	Г	240	16	-	4	_	10	-
	a	180	90	_	5	_	5	-
	б	200	100	_	6	_	5	_
22	В	240	120	-	10	_	5	-
	Г	240	150	-	10	-	5	-
	a	240	-	3	15	-	8	-
22	б	240	-	4	12	-	8	-
23	В	240	-	4	16	-	8	-
	Г	300	-	5	20	-	8	-
	a	240	-	12	60	-	6	-
24	б	220	-	11	110	-	6	-
24	В	220	-	10	90	-	6	-
	Γ	240	-	10	150	-	6	-
	a	240	3	-	12	-	10	-
25	б	240	3	-	15	-	10	_
23	В	240	2	-	10	-	10	-
	Γ	240	2	-	8	-	10	-
26	а	120	-	-	100	_	12	-
20	б	120	-	-	200	-	12	-

	В	125	-	-	125	-	12	-
	Г	125	-	-	60	-	12	-
	a	240	12	4	-	-	-	10
27	б	300	20	5	-	-	-	20
27	В	240	16	4	-	-	-	30
	Г	240	15	3	-	-	-	40
	a	240	12	60	-	-	-	50
20	б	240	12	36	-	-	-	60
20	В	240	15	60	-	-	-	70
	Г	240	15	30	-	-	-	80
	a	240	15	60	-	225	-	90
20	б	240	10	40	-	50	-	10
29	В	240	12	60	-	168	-	20
	Г	300	20	60	-	150	-	30
	a	240	12	-	-	-	-	40
20	б	200	10	-	-	-	-	50
50	В	240	15	-	-	-	-	60
	Г	240	20	-	-	-	-	70
	a	240	-	60	12	-	-	80
21	б	220	-	90	10	-	-	90
51	В	240	-	150	10	-	-	10
	Г	220	-	110	11	-	-	20
	а	300	20	180	-	-	-	30
37	б	240	12	60	-	-	-	40
32	В	320	20	60	-	-	-	50
	Г	240	15	60	-	-	-	60
	а	240	30	10	-	-	-	70
33	б	240	24	12	-	-	-	80
55	В	240	30	15	-	-	-	90
	Г	270	30	20	-	-	-	10
	a	240	12	60	-	-	-	20
34	б	240	15	60	-	-	-	30
54	В	240	15	75	-	-	-	40
	Г	240	20	180	-	-	-	50
	a	50	-	15	3	-	-	60
35	б	60	-	16	4	_	-	70
55	В	60	-	12	4	-	-	80
	Г	60	-	20	5	-	-	90
	a	125	-	60	12	-	-	10
36	б	125	-	36	12	-	-	20
50	В	125	-	60	15	-	-	30
	Г	125	-	30	15	-	-	40

Рис. 5.37. Веберамперная характеристика катушки индуктивности

Рис. 5.38. Кулонвольтная характеристика нелинейного конденсатора

Рис. 5.39. Вольтмаперная характеристика нелинейного резистора

ПРИМЕР РАСЧЕТА (R) «Расчет переходного процесса в цепи, содержащей нелинейное сопротивление»

Схема цепи приведена на рис. 5.40.

Дано: U = 400 В, $R_2 = 200$ Ом, C = 0,05 мк Φ . Решение

1). t = 0 - момент коммутации.

2). *t* ≥ 0 составим систему уравнений, используя законы Кирхгофа

$$\left. \begin{array}{c} i = i_1 + i_2 \\ U = u + R_2 i_2 \\ i_1 = C \frac{du_C}{dt} \end{array} \right\},$$

где u – напряжение на нелинейном резисторе. Выразим ток i_2 :

$$i_{2} = \frac{1}{R_{2}}(U-u).$$

Учтем, что $i_{1} = C\frac{du_{C}}{dt} = C\frac{d(U-u)}{dt} = -C\frac{du}{dt}.$
Тогда $i = i_{1} + i_{2} = -C\frac{du}{dt} + \frac{1}{R_{2}}(U-u)$, отсюда получим
 $R_{2}C\frac{du}{dt} + u + R_{2}i = U.$ (5.1)

3). Определим рабочий участок на вольт-амперной характеристике нелинейного сопротивления (рис. 5.41).

Находим начальные условия: $u_C(0) = U$, $U = u(0) + u_C(0)$, отсюда получаем

$$u(0) = 0 (5.2).$$

Это равенство определяет начало рабочего участка – точку a, для которой u = 0 В, i = 0 А.

Итак, нужно решить уравнение (5.1) при начальных условиях (5.2).

Находим напряжение на нелинейном сопротивлении в установившемся режиме, как точку пересечения (точка в) кривой u(i) с прямой $u = U - R_2 i = 400 - 200i$ для $t = \infty$. В точке в имеем u = 300 В, i = 0,5 А.

Метод кусочно-линейной аппроксимации

Аппроксимируем зависимость u(i) на участке **ав** двумя отрезками прямых **аб** и **бв.** Разбиение проводим таким образом, чтобы ломаная наиболее точно соответствовала исходной характеристике. На каждом из отрезков записываются линейные уравнение, связывающее параметры элемента

А). Участок **аб.** На этом участке отрезок аппроксимирующей прямой описывается следующим уравнением u = 1000i. Это уравнение вносим в уравнение (1) и получаем $R_2C1000\frac{di}{dt} + 1000i + R_2i = U$, это уравнение решаем при начальном значении тока $i(0) = \frac{u(0)}{1000} = 0$. $\frac{di}{dt} + 10^5i + 2 \cdot 10^4i = 4 \cdot 10^4$, $\frac{di}{dt} + 12 \cdot 10^4i = 4 \cdot 10^4$.

Характеристическое уравнение $\alpha + 12 \cdot 10^4 = 0$, отсюда $\alpha = -12 \cdot 10^4 \frac{1}{c}$. Решение ищем в виде

$$i = i' + A \mathrm{e}^{-\alpha t}, \qquad (5.3)$$

Для $t = \infty$ получаем $i' = \frac{4}{12}$.

Запишем (5.3) для момента коммутации (t = 0) $0 = \frac{4}{12} + A$, $A = -\frac{4}{12}$. Формируем решение $i = \frac{4}{12} (1 - e^{-1210^4 t}) = \frac{1}{3} (1 - e^{-1210^4 t})$ A. Находим момент времени t_0 , соответствующий точке **б**:

$$0,2 = \frac{1}{3} \left(1 - e^{-12 \cdot 10^4 t_0} \right), \quad t_0 = 0,076 \cdot 10^{-4} \quad \frac{1}{c}.$$

Таким образом, решение имеет вид $i = \frac{1}{3} \left(1 - e^{-12 \cdot 10^4 t} \right)$ А с постоянной времени $\tau_1 = \frac{1}{12 \cdot 10^4}$ с действует в интервале $0 \le t \le t_0$.

Б). Участок бв.

На участке **бв** отрезок прямой описывается уравнением $u = 200 + \frac{1000}{3}(i-0,2)$. Это выражение вносим в уравнение (5.1) и получаем $R_2C\frac{1000}{3}\frac{di}{dt} + 200 + \frac{1000}{3}(i-0,2) + R_2i = U$. Подставляем численные значения па-

раметров и получаем $\frac{di}{dt}$ + 16 · 10⁴ i = 8 · 10⁴. Данное уравнение решаем для t_0 , учитывая, что в установившемся режиме $\frac{di}{dt}$ = 0, и получаем i_0 = 0,2 A Характеристическое уравнение α + 16 · 10⁴ = 0, отсюда α = -16 · 10⁴ $\frac{1}{c}$. Решение ищем в виде

$$i = i' + Ae^{-\alpha t},$$

$$i' = \frac{8}{16} = \frac{1}{2}.$$
(5.4)

Запишем (4) для момента времени $(t = t_0)$ $0, 2 = \frac{1}{2} + A$, A = -0, 3.

Для $t = \infty$ получаем

Формируем решение $i = \frac{1}{2} - 0, 3e^{-16 \cdot 10^4(t-t_0)}$ *А*. Ток $i = \frac{1}{2} - 0, 3e^{-16 \cdot 10^4(t-t_0)}$ *А* изменяется с постоянной времени $\tau_2 = \frac{1}{16 \cdot 10^4}$ *с* на интервале времени $t > t_0$.

Метод Эйлера (метод последовательных интервалов)

Метод Эйлера – это численный метод, в котором дифференциальное уравнение первого порядка заменяется алгебраическим при замене производной по времени отношением конечных разностей.

Находим постоянную времени τ , аппроксимируя рабочий участок **ав** одним отрезком прямой, который описывается следующим уравнением u = 600i. Данное выражение вносим в уравнение (5.1) и получаем $R_2C600\frac{di}{dt} + 600i + R_2i = U$. Подставляем численные значения параметров цепи и получаем $\frac{di}{dt} + 1,27 \cdot 10^5 i = \frac{2}{3} \cdot 10^5$. Отсюда находим постоянную времени 1

$$\tau = \frac{1}{12,7 \cdot 10^5} \quad \mathrm{c}$$

Предполагаем, что переходный процесс длится 57.

Расчет выполняем с шагом *h*, количество которых выбираем равным 16.

$$h = \frac{5\tau}{16} = \frac{5 \cdot \frac{1}{12,7 \cdot 10^4}}{16} = 0,246 \cdot 10^{-5} \quad \text{c}$$

Алгоритм расчета выглядит следующим образом

$$u_{k+1} = u_k + \Delta u = u_k + \int_{u_k}^{u_{k+1}} du = u_k + h \frac{1}{R_2 C} (U - u_k - R_2 i_k).$$

Подставляем численные значения

$$u_{k+1} = u_k + \frac{0,246 \cdot 10^{-5}}{200 \cdot 0,05 \cdot 10^{-6}} (400 - u_k - 200i_k), \quad u_{k+1} = u_k + 0,13 (400 - u_k - 200i_k).$$

1). Делаем нулевой шаг t = 0, $i_0 = 0$, $u_0 = 0$.

2). Делаем первый шаг t = h, $u_1 = u_0 + 0.13(400 - u_0 - 200i_0) = 52$ В, $i_1 = 0.03$ А.

Аналогичным образом совершаем остальные 14 шагов.

По результатам расчетов строим зависимость i(t) (рис. 5.42).

ПРИМЕР РАСЧЕТА (L)

«Расчет переходного процесса в цепи, содержащей нелинейную индуктивность»

Схема цепи показана на рис. 5.43.

Дано: U = 30 В, $R_0 = 500$ Ом, $R_1 = 100$ Ом $R_2 = 200$ Ом. Веберамперная характеристика представлена на рис. 5.44.

1). *t* = 0-момент коммутации.

2). *t* ≥ 0 составим систему уравнений, используя законы Кирхгофа

$$i = i_1 + i_2$$

$$U = (R_0 + R_1) + \frac{d\Psi}{dt}$$

$$i_2 = \frac{1}{R_2} \frac{d\Psi}{dt}$$

)

Преобразуем полученную систему уравнений следующим образом $U = (R_0 + R_1)i + \frac{R_0 + R_1}{R_2}\frac{d\Psi}{dt} + \frac{d\Psi}{dt},$

отсюда получим

$$\frac{d\Psi}{dt} + \frac{(R_0 + R_1)R_2}{R_0 + R_1 + R_2}i = \frac{R_2}{R_0 + R_1 + R_2}U.$$

Подставляем численные значения параметров и получим расчетное уравнение

$$\frac{d\Psi}{dt} + 150i = 7,5.$$
 (5.5)

3). Определим рабочий участок на вебер-амперной характеристике нелинейной индуктивности.

Находим начальные условия: $i(0) = \frac{U}{R_1} = \frac{30}{100} = 0,03$ А, и далее по веберамперной характеристике находим

$$\Psi(0) = 3,33 \cdot 10^{-3} \text{ BG}, \qquad (5.6).$$

 $i(0), \Psi(0)$ -координаты начала рабочего участка – точки *а*.

Находим ток через нелинейную индуктивность в установившемся режиме, для $t = \infty$. Из уравнения (5.5) имеем $i = \frac{7,5}{150} = 0,05$ А. Этот ток характеризует конец рабочего участка - точку **б.**

Метод кусочно-линейной аппроксимации

Аппроксимируем зависимость $\Psi(i)$ на участке *ab* двумя отрезками прямых *bc* и *ca*.

А). Участок *са.* На этом участке отрезок аппроксимирующей прямой описывается следующим уравнением

$$\Psi = 2.66 \cdot 10^{-3} + 5 \cdot 10^{-3} (i - 0.166).$$
(5.7)

Это уравнение подставляем в уравнение (5.5) и получаем $5 \cdot 10^{-3} \frac{di}{dt} + 150i = 7,5;$ $\frac{di}{dt} + 30 \cdot 10^3 i = 1,5 \cdot 10^3$, это уравнение решаем при начальном значении тока i(0) = 0,3. Характеристическое уравнение $\alpha + 30 \cdot 10^3 = 0$, отсюда $\alpha = -\frac{1}{3 \cdot 10^4} \frac{1}{c};$ $\tau = 3 \cdot 10^{-4}$ с.

Решение ищем в виде

$$i = i' + A \mathrm{e}^{-\alpha t}, \qquad (5.8)$$

Для $t = \infty$ получаем $i' = \frac{1,5 \cdot 10^3}{30 \cdot 10^3} = 0,05$. Запишем (5.8) для момента коммутации (t = 0) 0,3 = 0,05 + A, A = 0,25. Формируем решение $i = 0,05 + 0,25e^{-310^4 t}$ A.

Это решение действует до $i_0 = 0,166$ А и t_0 . Находим момент времени t_0 , соответствующий точке *c*:

$$0,166 = 0,05 + 0,25e^{-3 \cdot 10^4 t_0}, t_0 = 0,256 \cdot 10^{-4}$$
 c

Таким образом, решение $i = 0,05 + 0,25e^{-310^4 t}$ *A* с постоянной времени $\tau = 3 \cdot 10^{-4} c$ действует в интервале $0 \le t \le t_0$.

Б). Участок *сb*.

На участке *cb* отрезок прямой описывается уравнением $\Psi = 1,5 \cdot 10^{-3} + 10^{-2}(i - 0,05)$. Это выражение подставляем в уравнение (5.5) и получаем $10^{-2} \frac{di}{dt} + 150i = 7,5;$ $\frac{di}{dt} + 150 \cdot 10^2 i = 7,5 \cdot 10^2$. Данное уравнение решаем при $i_0 = 0,166$ А.

Характеристическое уравнение $\alpha + 150 \cdot 10^2 = 0$, отсюда $\alpha = -150 \cdot 10^2 \frac{1}{c}$. Решение ищем в виде

$$i = i' + A \mathrm{e}^{-\alpha t}, \qquad (5.9)$$
Для $t = \infty$ получаем $i' = \frac{7.5 \cdot 10^2}{150 \cdot 10^2} = 0,05$. Запишем (5.9) для момента времени $(t = t_0)$ 0,166 = 0,05 + A, A = 0,116. Формируем решение $i = 0,05 + 0,116e^{-1.5 \cdot 10^4(t-t_0)}$ A. Ток $i = 0,05 + 0,116e^{-1.5 \cdot 10^4(t-t_0)}$ А изменяется с постоянной времени

 $\tau_2 = \frac{1}{150 \cdot 10^2}$ с на интервале времени $t > t_0$.

<u>Метод Эйлера</u>

Находим постоянную времени τ , аппроксимируя рабочий участок *ab* одним отрезком прямой. Находим соответствующую индуктивность

 $L = \frac{\Psi(0) - \Psi(\infty)}{i(0) - i(\infty)} = \frac{\Psi_a - \Psi_b}{i_a - i_b} = 7,32 \cdot 10^{-3}$ Отсюда находим постоянную времени $\tau = \frac{L}{150} = \frac{7,32 \cdot 10^{-3}}{150} = 0,049 \cdot 10^{-3} \text{ с.}$

Предполагаем, что переходный процесс длится 57.

Расчет выполняем с шагом *h*, количество которых выбираем равным 16.

$$h = \frac{5\tau}{16} = \frac{5 \cdot 0.049 \cdot 10^{-3}}{16} = 1.53 \cdot 10^{-5} \quad \text{c}$$

Алгоритм расчета выглядит следующим образом (из уравнения (5.5)) $\Psi_{k+1} = \Psi_k + \Delta \Psi = \Psi_k + h(7,5-150\Psi_k).$

1). Делаем нулевой шаг t = 0, $\Psi_0 = 3,33 \cdot 10^{-3}$ Вб, $i_0 = 0,3$ А.

2). Делаем первый шаг t = h, $\Psi_1 = \Psi_0 + 1,53 \cdot 10^{-5} (7,5 - 150i_0) = 2,76 \cdot 10^{-3}$ Вб, i = 0.2 А

 $i_1 = 0,2$ A.

Аналогичным образом совершаем остальные 14 шагов. По результатам расчетов строим зависимость i(t) (рис. 5.45).

ПРИМЕР РАСЧЕТА (С)

«Расчет переходного процесса в цепи, содержащей нелинейный конден-

Дано: U = 30 В, $R_1 = 100$ Ом, $R_2 = 50$ Ом, C = 0,1 мк Φ , кулон-вольтная характеристика приведена на рис. 5.47.

1). *t* = 0-момент коммутации.

2). *t* ≥ 0 составим систему уравнений, используя законы Кирхгофа

$$\left. \begin{array}{c} i = i_{C} + i_{2} \\ U = u_{C} + R_{1}i_{1} \\ i_{2} = \frac{u_{C}}{R_{2}} \end{array} \right\}.$$

74

Преобразуем данную систему

$$U = R_1 i_C + \frac{R_1}{R_2} u_C + u_C, \qquad \frac{dq}{dt} + \frac{1}{R_1} \left(1 + \frac{R_1}{R_2} \right) u_C = \frac{U}{R_1}.$$

Подставим численные значения параметров и получим

$$\frac{dq}{dt} + 3 \cdot 10^{-2} u_c = 0.3. \tag{5.10}$$

3). Определим рабочий участок на кулон-вольтной характеристике нелинейного сопротивления.

Находим начальные условия: $u_c(0) = U = 30$ В и по кулон-вольтной характеристике $q(0) = 3,5 \cdot 10^{-6}$ К. Таким образом, мы нашли координаты начала рабочего участка – точки **а**.

Рассмотрим установившийся режим. Из уравнения (5.10) имеем $u_c = \frac{0.3}{3 \cdot 10^{-2}} = 10$ В. Данное напряжение соответствует точке **б.**

Метод кусочно-линейной аппроксимации

Аппроксимируем зависимость $q(u_c)$ на участке аб двумя отрезками прямых ав и вб.

А). Участок **ав.** На этом участке отрезок аппроксимирующей прямой описывается следующим уравнением $q = 2,8 \cdot 10^{-6} + 0,07 \cdot 10^{-6} (u_c - 20)$. Это уравнение подставляем в уравнение (5.10) и получаем $0,07 \cdot 10^{-6} \frac{du_c}{dt} + 3 \cdot 10^{-2} u_c = 0,3 \rightarrow \frac{du_c}{dt} + 4,3 \cdot 10^5 u_c = 43 \cdot 10^5$. Это уравнение реша-ем при начальном значении напряжения на конденсаторе $u_c(0) = 30$ В.

Характеристическое уравнение $\alpha + 4,3 \cdot 10^5 = 0$, отсюда $\alpha = -4,3 \cdot 10^5 \frac{1}{c}$.

 $\tau_1 = \frac{1}{4, 3 \cdot 10^5} \ \mathrm{c}.$

Решение ищем в виде

$$u_{c} = u_{c}' + Ae^{-\alpha t}$$
, (5.11)
Для $t = \infty$ получаем $u_{c}' = \frac{43 \cdot 10^{5}}{4.3 \cdot 10^{5}} = 10$ В.

Запишем (5.11) для момента коммутации (t = 0) 30 = 10 + A, A = 20. Формируем решение $u_c = 10 + 20e^{-4,310^5 t}$ B.

Находим момент времени t_0 , соответствующий точке в:

$$20 = 10 + 20e^{-4.310^{5}t_{0}}, \quad t_{0} = 0.16 \cdot 10^{-5} c.$$

Таким образом, решение имеет вид $u_c = 10 + 20e^{-4.310^5 t}$ *B* с постоянной времени $\tau_1 = \frac{1}{4,3 \cdot 10^5}$ *c* действует в интервале $0 \le t \le t_0$. Б). Участок **вб.** На участке **вб** отрезок прямой описывается уравнением $q = 2,0 \cdot 10^{-6} + 0,08 \cdot 10^{-6} (u_c - 10)$. Это выражение подставляем в уравнение (5.10) и получаем $\frac{du_c}{dt} + 3,75 \cdot 10^5 u_c = 37,5 \cdot 10^5$. Характеристическое уравнение $\alpha + 3,75 \cdot 10^5 = 0$, отсюда $\alpha = -3,75 \cdot 10^5 \frac{1}{c}$, $\tau_2 = \frac{1}{3,75 \cdot 10^5}$ с

Решение ищем в виде

$$u_c = u'_c + Ae^{-a/t}$$
, (5.12)
Для $t = \infty$ получаем $u'_c = \frac{37,5 \cdot 10^5}{3,75 \cdot 10^5} = 10$ В.
Запишем (5.12) для момента времени $(t = t_0)$ 20 = 10 + A, $A = 10$.
Формируем решение $u_c = 10 + 10e^{-3,7510^5(t-t_0)}$ В.
Напряжение $u_c = 10 + 10e^{-3,7510^5(t-t_0)}$ В изменяется с постоянной време-

ни $\tau_2 = \frac{1}{3,75 \cdot 10^5}$ с на интервале времени $t > t_0$.

Метод Эйлера

Находим постоянную времени τ , аппроксимируя рабочий участок **аб** одним отрезком прямой, который описывается следующим уравнением $q = 2,0 \cdot 10^{-6} + \frac{1,5}{20} \cdot 10^{-6} (u_c - 10)$. Данное выражение подставляем в уравнение (5.10) и получаем $\frac{du_c}{dt} + 4 \cdot 10^5 u_c = 40 \cdot 10^5$. Отсюда находим постоянную времени $\tau = \frac{1}{4 \cdot 10^5}$ с.

Предполагаем, что переходный процесс длится 57.

Расчет выполняем с шагом h, количество которых выбираем равным

Рис. 5.48

Алгоритм расчета выглядит следующим образом (из уравнения (5.10))

 $q_{k+1} = q_k + h (0, 3 - 3 \cdot 10^{-2} u_k).$

1). Делаем нулевой шаг t = 0, $q_0 = 3,5 \cdot 10^{-6}$ K, $u_{C0} = 30$ B.

2). Делаем первый шаг t = h, $q_1 = q_0 + 0.078 \cdot 10^{-5} (0.3 - 3 \cdot 10^{-2} u_0) = 3.032 \cdot 10^{-6}$ К, $u_{c_1} = 21.5$ В.

Аналогичным образом совершаем остальные 14 шагов.

По результатам расчетов строим зависимость $u_c(t)$ (рис. 5.48).

ЛИТЕРАТУРА

1. Основная

Сборник домашних заданий по теоретическим основам электротехники с методическими указаниями [Текст] : Учеб. для вузов / К. И. Ким [и др.]. Ч.1, 1988. - 57 с.

Сборник домашних заданий по теоретическим основам электротехники с методическими указаниями [Текст] : Учеб. для вузов / К. И. Ким [и др.]. Ч.2, 1988. - 44 с

Теоретические основы электротехники [Текст] : Учеб. для вузов / К. С. Демирчян [и др.]. Т.1, 2003. - 462 с.

Теоретические основы электротехники [Текст] : Учеб. для вузов / К. С. Демирчян [и др.]. Т.2, 2003. - 575 с.

Теоретические основы электротехники [Текст] : Учеб. для вузов / К. С. Демирчян [и др.]. Т.3, 2003. - 376 с.

Коровкин, Николай Владимирович. Теоретические основы электротехники [Текст] : Сб. задач / Н. В.Коровкин, Е. Е.Селина, В. Л.Чечурин, 2004. - 512 с.

Kim K. K. Linear electrical circuits in steady regimes [Text] : Teaching aid / K. K.Kim, 2002. - 183 c.

Kim K. K. Linear electrical circuits in transients [Текст] : teaching aid / K. K.Kim, 2004. - 92 с.

Ким, Константин Константинович. Линейные электрические цепи [Text] : учеб. пособие / К. К. Ким, 2006. - 324 с.

Ким, Константин Константинович. Линейные электрические цепи [Text] : учеб. пособие. Ч. 1 / К. К. Ким, 2011. - 51 с.

Атабеков Г.И., Купалян С.Д., Тимофеев А.Б., Хухриков С.С. Теоретические основы электротехники. Нелинейные электрические цепи. Электромагнитное поле. www.lanbook.ru

<u>Атабеков Г.И. Основы теории цепей</u>. www.lanbook.ru

<u>Атабеков Г.И. Теоретические основы электротехники. Линейные электрические цепи</u>. www.lanbook.ru

Белецкий А.Ф. Теория линейных электрических цепей. www.lanbook.ru

2. Дополнительная

Ким, Константин Константинович. Расчет электрических цепей в системе MATHEMATICA [Текст] : учеб. пособие для вузов / К. К. Ким, А. Н. Бестужева, А. Л. Смирнов, 2008. - 279 с.

Бычков Ю.А., Золотницкий В.М., Чернышев Э.П. и др. Основы теоретической электротехники. www.lanbook.ru

<u>Бычков Ю.А.</u> Сборник задач по основам теоретической электротехники. www.lanbook.ru

СОДЕРЖАНИЕ Введение ЗАДАНИЕ №1 РАСЧЕТ ЦЕПИ ПОСТОЯННОГО ТОКА Пример расчета ЗАДАНИЕ № 2 РАСЧЕТ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА КОМПЛЕКСНЫМ МЕТОДОМ Пример расчета ЗАДАНИЕ №3 РАСЧЕТ ТРЕХФАЗНОЙ ЦЕПИ Пример расчета <u>ЗАДАНИЕ № 4</u> РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ Пример расчета ЗАДАНИЕ №5 РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В НЕЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ Пример расчета (\mathbf{R}) Пример расчета (L)Пример расчета (С) ЛИТЕРАТУРА