Задание на практикум.

Задание №1

Согласно номеру варианта для 2-х звеньев с указанными в табл. № 1 параметрами, записать передаточные функции и построить:

- логарифмическую амплитудно-частотную характеристику (ЛАЧХ);
- логарифмическую фазочастотную характеристику (ЛФЧХ);
- амплитудно-фазовую характеристику (АФХ);

Таблица 1

№ вариа нта	Тип звена	Коэффи- циент К	Постоян- ная времени	Постоян- ная времени	Декремент затухания ξ
			T1	T2	
1	а,г	1.0	5.0	2.0	-
2	а,д	2.0	3.0	-	0.5
3	В,Г	3.0	2.0	5.0	-
4	б,д	4.0	5.0	-	0.6
5	б,в	5.0	2.0	4.0	-
6	б,г	6.0	3.0	1.0	-
7	в,д	7.0	1.0	3.5	0.25
8	г,д	8.0	6.0	2.0	0.15
9	б,е	9.0	1.5	-	=
10	е,д	10.0	3.5	-	0.55
11	а,б	5.0	3.0	-	=
12	а,в	7.5	2.0	10.0	-
13	a,e	4.0	2.5	-	=
14	в,е	5.0	1.0	5.0	-
15	г,е	2.5	5.0	2.0	-

Типы звеньев:

а) интегрирующего W(p) = k/p;

б) инерционного W(p) = k/(I+T1p);

в) упругого дифференцирующего W(p) = k(I+T2p)/(I+T1p), T2 > T1

г) упругого интегрирующего W(p) = k(I+T2p)/(I+T1p), T2 < T1;

д) колебательного $W(p) = k/(1+2\xi T1p+T1^2p^2)$

е) реального дифференцирующего W(p) = kp/(I+T1p).

Задание №2

Построить переходную характеристику по передаточной функции замкнутой системы (рис.1) в соответствии с заданным вариантом (табл.2). Определить устойчивость системы и прямые показатели качества: время регулирования, перерегулирование, время первого максимума, число колебаний и статическую ошибку системы.

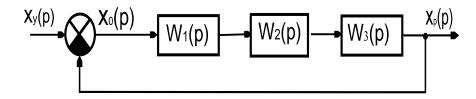


Рис.1. Структурная схема исследуемой САУ

$$W_1(p) = \frac{K_1}{1 + pT_1}; W_2(p) = \frac{K_2}{1 + pT_2}; W_3(p) = \frac{K_3}{p}.$$

Таблица 2.

№ варианта	К1	\mathbf{K}_2	К ₃	T ₁ [c]	T ₂ [c]
1	10	10	1	0.1	0.005
2	50	2.0	1	0.2	0.005
3	25	4.0	1	0.5	0.005
4	10	5.0	1	0.8	0.01
5	20	2.5	1	1.0	0.01
6	10	3.0	1	1.0	0.05
7	10	4.0	1	0.3	0.025
8	20	2.0	1	0.4	0.005
9	30	1.0	1	0.15	0.005
10	15	2.0	1	0.25	0.005
11	25	3.0	1	0.3	0.004
12	30	3.0	1	0.5	0.004
13	40	1.5	1	0.6	0.005
14	35	2.0	1	0.5	0.0025
15	45	1.5	1	0.4	0.0015

Задание №3

По передаточной функции разомкнутой системы (рис.1) в соответствии с заданным вариантом (табл.2), построить ЛАЧХ, ЛФЧХ и АФХ. По построенным характеристикам определить запасы устойчивости по фазе и амплитуде, предельный коэффициент усиления.

Теоретические положения

1. Для описания линейных непрерывных систем автоматического управления (САУ) широко используются временные и частотные характеристики, основным преимуществом которых является то, что они могут быть экспериментально получены при исследовании системы. В качестве временных характеристик наиболее часто используются переходные и весовые (импульсные переходные) функции, представляющие собой реакции САУ на единичную ступенчатую функцию и δ-функцию Дирака соответственно. Схема снятия частотных характеристик объекта представлена на рис. 2.

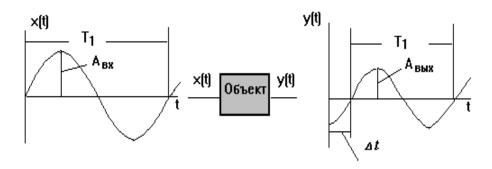


Рис. 2. Схема снятия частотных характеристик объекта

Период колебаний равен Т1 = $2\pi/\omega$, а сдвиг по времени $\Delta t = \varphi/\omega$

Используя формулу Эйлера: $e^{j\omega t}=\cos\omega t+j\cdot\sin\omega t$, входной и выходной сигналы объекта можно представить в виде:

$$x(t) = A_{BX}\sin \omega t = Im\{A_{BX}e^{j\omega t}\}=Im\{\dot{X}(j\omega)\}$$

$$y(t) = A_{\text{BMX}} \sin(\omega t + \varphi) = Im\{A_{\text{BMX}} e^{j(\omega t + \varphi)}\} = Im\{Y(j\omega)\}.$$

где lm – выделение мнимой части комплексного числа,

 $X(j\omega)$ - входной сигнал в комплексной форме,

 $\dot{Y}(j\omega)$ - выходной сигнал, представленный в комплексной форме

Основой всех частотных характеристик является комплексный коэффициент усиления, определяемый выражением

$$W(j\omega) = \frac{\dot{Y}(j\omega)}{\dot{X}(j\omega)} = A(\omega)e^{j\varphi(\omega)}.$$

На основании выражения для $W(j\omega)$ можно найти амплитудно-фазовую АФХ $\mathbf{W}(\mathbf{j}\omega)$, амплитудную $\mathbf{A}(\omega)$ и фазовую $\mathbf{\varphi}(\omega)$ частотные характеристики, а также логарифмические амплитудную $\mathbf{L}(\omega)$ =20Lg $\mathbf{A}(\omega)$ (ЛАЧХ) и фазовую $\mathbf{\varphi}(\omega)$ (ЛФЧХ) частотные характеристики (при изменении частоты ω от 0 до ∞).

2. Основное условие работоспособности систем автоматического управления заключается в ее устойчивости. Однако устойчивость -недостаточное условие ее практического применения. Наряду с этим выдвигаются определенные требования к качеству процессов регулирования. Комплекс требований, определяющих поведение системы в установившемся и переходном режимах отработки заданного воздействия определяется показателями качества работы САУ: прямыми показателями качества (быстродействием и характером переходного процесса), определяемыми по переходной характеристике САУ, косвенными (запасами устойчивости по амплитуде и фазе), точностью.

Показатели качества процесса отработки входного воздействия будем рассматривать для системы, структурная схема которой изображена на рис.3.

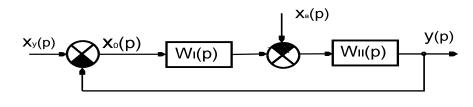


Рис.3. Структурная схема САУ

Запасы устойчивости по амплитуде и фазе

Линейная система устойчива, если с течением времени переходная составляющая процесса стремится к нулю:

$$\lim_{t\to\infty} \mathsf{x}_{\mathsf{nep.}}(\mathsf{t})$$
 = 0, $\mathsf{x}_{\mathsf{nep.}}(\mathsf{t}) = \sum_{i=1}^n c_i \cdot e^{p_i t}$, где $\mathsf{c_i}$ – постоянные интегрирования,

рі – корни характеристического уравнения исследуемой САУ.

Уравнение динамики системы (рис.3.) в изображении по Лапласу имеет вид

$$[1+W_p(p)]\cdot Y(p) = W_p(p)\cdot X_y(p)\pm W_{II}(p)\cdot X_B(p),$$

где $W_p(p) = W_l(p) \cdot W_l(p) = K(p)/D(p)$ — передаточная функция разомкнутой системы. Уравнение свободного режима [1+ $W_p(p)$]-Y(p) = 0.

Характеристическое уравнение замкнутой САУ:

$$A(p) = K(p) + D(p) = 0.$$

Для устойчивости линейной замкнутой САУ $\lim_{t\to\infty}(x_{nep.}=0)$ необходимо и достаточно, чтобы вещественные части корней характеристического уравнения были отрицательными, т.е. лежали в левой части комплексной плоскости.

Замкнутая система должна быть не просто устойчивой, а обладать определенными запасами устойчивости по амплитуде и по фазе. Запас устойчивости по амплитуде определяется либо величиной

 $\Delta A = 1 - A_{\pi}$, либо величиной 1/ A_{π}

(в логарифмических единицах $L_{\pi}=20\cdot lg(1/A_{\pi})[дБ])$, где A_{π} - значение модуля вектора $W_{p}(j\omega)$, аргумент которого равен $\varphi=-\pi$ (рис.4.).

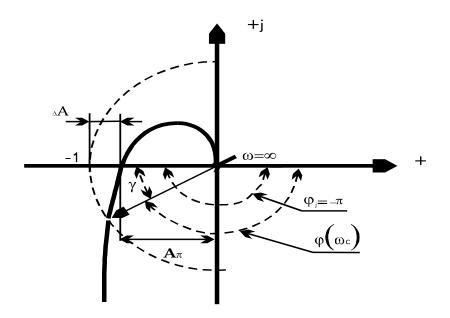


Рис.4. Определение запаса устойчивости по фазе у и модулю ΔA (1/ A_{π})

Запас устойчивости по фазе обозначается γ и определяется на частоте среза ω_c , при которой амплитуда $A(\omega_c)=1$,

$$\gamma = 180^{0} + \phi(\omega_{c}), \tag{2.1}$$

где $\phi(\omega_c)$ - значение аргумента вектора $W_p(j\omega)$ при $\omega=\omega_c$.

Изображенные на рис.4 и 5 годограф $W_p(j\omega)$ и логарифмические характеристики разомкнутой системы показывают, что система в замкнутом состоянии устойчива и обладает запасом устойчивости по фазе $\gamma > 0$ и по амплитуде

$$L_{\pi} = 20 \cdot lg(1/A_{\pi}) > 0 (1/A_{\pi} > 1).$$

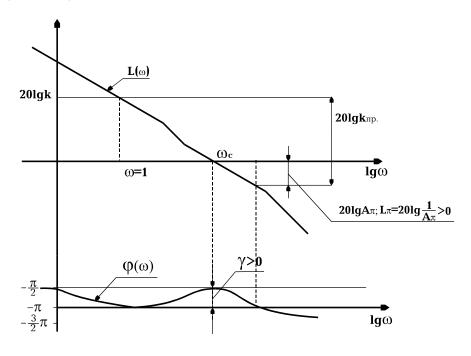


Рис.5. Определение запаса устойчивости по ЛАЧХ и ЛФЧХ

Коэффициент усиления, при котором замкнутая САУ находится на границе колебательной устойчивости называется предельным $\mathbf{K}_{\mathsf{пред}}$.

На основании критерия устойчивости Найквиста предельный коэффициент усиления может быть определен соотношением

$$K_{\text{пред}} = K \cdot (1/A_{\pi}).$$

Предельный коэффициент усиления САУ можно определить по логарифмическим частотным характеристикам (рис.5.)

$$20 \cdot \lg K_{nped} = 20 \cdot \lg K - 20 \cdot \lg A_{\pi}$$

Если коэффициент усиления разомкнутой системы меньше предельного коэффициента $\mathbf{K}_{\text{пред}}$, то система устойчива и обладает запасом устойчивости (по фазе, модулю). В противном случае - система неустойчива.

Точность работы САУ

Точность работы САУ определяется ошибкой, которая равна разности между задающим значением и значением выходного сигнала при $t \to \infty$, т.е.

$$x_{0ycm} = \lim_{t \to \infty} x_0(t) = \lim_{t \to \infty} (x_y(t) - y(t)).$$

В соответствии со структурной схемой САУ (рис.3) ошибка в изображении по Лапласу

$$X_0(p) = \frac{1}{1 + W_p(p)} \cdot X_y(p) + \frac{W_H(p)}{1 + W_p(p)} \cdot X_B(p).$$
 (2.2)

Уравнение (2.2.) дает возможность получить ошибку и в переходном и в установившемся режимах по управляющему $X_y(p)$ и возмущающему $X_y(p)$ воздействиям. Для определения ошибки в установившемся режиме можно воспользоваться теоремой о предельном значении преобразования Лапласа:

$$x_{0ycm.} = \lim_{t \to \infty} x_0(t) = \lim_{p \to 0} p \cdot X_0(p)$$
. (2.3)

В зависимости от вида входного сигнала получаем различные виды ошибок. Так, при подаче на вход ступенчатого воздействия в установившемся режиме возникает <u>с</u>татическая ошибка:

$$x_{cT} = x_{0ycm.} = \lim_{p \to 0} \left(\frac{1}{1 + W_p(p)} \cdot x_{y0} + \frac{W_H(p)}{1 + W_p(p)} \cdot x_{B0} \right) =$$

$$x_{cT.y} + x_{cT.B}$$
(2.4)

Кинетическая ошибка $\mathbf{x}_{\text{кин.}}$ или скоростная возникает в установившемся режиме после отработки линейно возрастающего входного воздействия $\mathbf{x}_{y}(t) = \mathbf{V} \cdot \mathbf{t}$ или $\mathbf{X}_{y}(p) = \mathbf{V} \cdot \mathbf{p}^{2}$,

где
$$x_{\kappa u \mu} = x_{0ycT.y} = \lim_{p \to 0} p \cdot \left[\frac{1}{1 + W_p(p)} \cdot \frac{V}{p^2} \right].$$
 (2.5)

При отработке входного воздействия, изменяющегося по квадратичному закону $(x_{_{y}}(t)=\frac{a\cdot t^{^{2}}}{2},X_{_{y}}(p)=\frac{a}{p^{^{3}}})\text{, в установившемся режиме возникает ошибка по ускорению:}$

$$x_a = x_{0ycT.y} = \lim_{p \to 0} p \cdot \left[\frac{1}{1 + W_p(p)} \cdot \frac{a}{p^3}\right],$$
 (2.6)

Как видно из формул (2.4 - 2.7), ошибки зависят от уровня входного сигнала, от порядка астатизма системы, равного разности числа интегрирующих и дифференцирующих звеньев, лежащих в цепи обратной связи по отношению к заданному входному сигналу и сигналу ошибки.

Характер переходного процесса и быстродействие САУ

Время регулирования t_p служит основной характеристикой быстродействия системы и определяется из условия малости переходной составляющей. Быстродействие вычисляется от момента подачи входного воздействия, до момента, когда отклонение функции h(t) не выходит за пределы некоторой заданной зоны $\pm \Delta$ (рис.6): h(t)- $h_{ycT.} \le \Delta$, где Δ — значение, определяемое заданной точностью системы. Обычно Δ задается в пределах (3-5)% от установившегося значения $h_{ycT.} = h(\infty)$ (рис.6).

$$h_{ycT.} = \lim_{t \to \infty} h(t) = \lim_{p \to 0} p \cdot W_3(p) \cdot \frac{1}{p},$$
 (2.7)

где
$$W_3(p) = \frac{W_p(p)}{1 + W_p(p)}$$
 - передаточная функция замкнутой системы.

Установившееся значение переходной функции для статической системы (v = 0):

$$h_{ycT.} = rac{W_p(0)}{1 + W_p(0)} = rac{k}{1 + k} pprox 1$$
, где k -коэффициент усиления разомкнутой системы,

k » 1.

Для астатической системы
$$\emph{v}$$
 = 1: $\emph{h}_{\emph{yct.}}$ = 1, так как $\lim_{p \to 0} W_3(p) \to \infty$.

Как видно из рис.6, характер переходного процесса может быть колебательным и апериодическим. Колебательный процесс характеризуется:

1. Максимальным перерегулированием σ:

$$\sigma = \frac{h_m - h(\infty)}{h(\infty)} \cong h_m - 1; h_\infty = h_{ycT}.$$

2. Временем достижения первого максимума - t_m ;

3. Числом колебаний **N** за время регулирования t_p.

Таким образом, прямыми показателями качества переходного процесса являются: время регулирования t_p , перерегулирование $\sigma(h_m)$, время достижения первого максимума t_m , число колебаний N, которые определяются непосредственно по переходной характеристике h(t).

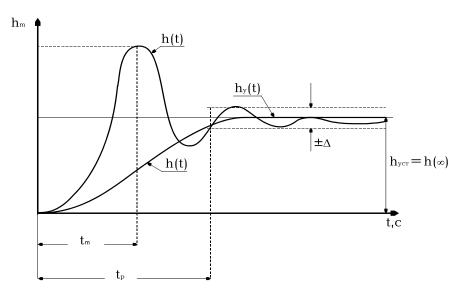


Рис.6. Переходная функция h(t) и ее параметры

Переходная функция системы h(f) может быть получена классическим методом по передаточной функции САУ:

$$h(t) = L^{-1}[rac{W_3(p)}{p}]$$
. (2.9), где $rac{1}{p}$ - изображение по Лапласу единичной

ступенчатой функции.

С помощью разложения передаточной функции замкнутой системы $W_3(p)$ на простые дроби (при условии некратных корней и правильности дробно-рациональной функции $W_3(p)/p$):

$$\frac{W(p)}{p} = \frac{K(p)}{pA(p)} = \sum_{i=0}^{n} \frac{K(p_{j})}{A'(p_{i}) \cdot (p - p_{i})} = \frac{K(0)}{A(0)p} + \sum_{i=1}^{n} \frac{K(p_{i})}{p_{i} \cdot A'(p_{i}) \cdot (p - p_{i})}$$
(2.10)

и переходя от изображений к оригиналам, получим:

$$h(t) = \left[\frac{K(0)}{A(0)} + \sum_{i=1}^{n} \frac{K(p_i)}{p_i \cdot A'(p_i)} e^{p_i t}\right] \cdot 1(t), \qquad (2.11)$$

где p_i - полюса передаточной функции замкнутой системы $W_3(p)$. Переходную функцию можно получить экспериментально для реальной исследуемой системы или для ее модели. При этом на вход системы (модели) подается единичный скачок. Реакция на выходе и будет являться переходной функцией y(t) = h(t).