Расчетно-графическая работа № 1.

РГР сопровождается титульным листом, выполняется на листах с рамкой и штампом, шрифт Times New Roman, размер 14, междустрочный интервал 1,5. Исходные данные студента записываются в начале РГР.

Исходные данные выби	раются студентом по своему варианту (1-	10):
TIVITO ALIENT AWAILED EDICIT	position of position is obtained by	_		, -

Помили	Номер варианта										
Данные	1	2	3	4	5	6	7	8	9	10	
Масса вагона брутто, q (т);	88	65	93	100	50	82	90	102	150	86	
Длина приемоотправочных путей, $l_{\Pi O \Pi}$ (м)	1250	1500	1400	2000	1000	1200	1250	1500	2500	1300	
Локомотив	ВЛ10	ВЛ11	2ВЛ11	ВЛ10	ВЛ22 М	ВЛ80	ВЛ80	ТЭ7	2ТЭМ 10М	ВЛ60	
Расчетная сила тяги, $F_{\mathit{KP}}(H)$	451 250	460 000	480 000	502 000	343 000	490 000	512 000	496 400	744 000	368 000	
Расчетная скорость, V_K (км/ч)	46,7	46,7	49,0	45,8	35,5	44,2	44,2	24,0	23,5	43,5	
Расчетная масса, Р (т)	184	184	276	200	84	190	192	254	276	138	
Конструкционная скорость, V_{KOHCTP} (км/ч)	100	100	100	100	80	110	110	140	100	100	
Сила тяги при трогании с места, $F_{\mathit{KTP}}(H)$	614 100	614 100	939 000	667 000	364 900	000 829	000 829	374 700	797 550	201 100	
Длина локомотива, $l_{\it Л}$ (м)	33	33	65,7	33	33	32,5	32,5	25,6	34	20,8	
Крутизна уклона, $ic\ (^{\circ}/_{oo})$	-12	-10	-7	-14	-6,5	-11,5	-8	-6	-9,5	-11	
Крутизна подъема, i_P ($^{\circ}/_{\circ \circ}$)	+7	+4,5	+5	+6	+9	+7,5	+4,5	+5,5	+3	+2	
Удельная тормозная сила при начальной скорости, b_T (H/кH)	28,62	28,62	28,62	28,62	29,5	29,5	27,5	35,0	28,62	28,62	
Вагоны в составе	4-осные										

Задание 1. Определить массу состава по расчетному подъему.

Масса состава в тоннах вычисляется по формуле:

$$Q = \frac{F_{KP} - (w_0 + i_P) \cdot P \cdot g}{(w_0 + i_P) \cdot g}$$

где F_{KP} - расчетная сила тяги локомотива; P - расчетная масса локомотива; i_P - крутизна расчетного подъема; $g = 9.81 \text{ м/c}^2$ - ускорение свободного падения; w_0 - основное удельное сопротивление локомотива, $H/\kappa H$; w_0 - основное удельное сопротивление состава, $H/\kappa H$;

Основное удельное сопротивление локомотива, в зависимости от скорости на режиме тяги подсчитывается по формуле:

$$w_0' = 1.9 + 0.01 \cdot v_K + 0.0003 \cdot v_K^2$$

где V_K км/ч - расчетная скорость;

Основное удельное сопротивление состава с четырехосными вагонами на роликовых подшипниках рассчитывается по формуле:

$$w_{04}'' = 0.7 + \frac{3 + 0.1 \cdot v_K + 0.0025 \cdot v_K^2}{q_{04}}$$

где q_{04} - масса, приходящаяся на одну колесную пару 4-хосного вагона, т/ось;

$$q_{04} = q_4/4$$

Задание 2. Проверить массу состава по длине приемоотправочных путей заданного участка.

Число вагонов в составе поезда рассчитывается по формуле:

$$m_4=Q/q_4$$

Длина поезда рассчитывается по формуле:

$$l_{II} = l_B \cdot m_4 + l_{II} + 10$$

где $l_{\mathcal{I}}$ м - длина локомотива;

 $l_B = 15$ м - длина четырехосного вагона;

 l_{H} = 10 м - запас длины на неточность установки поезда.

Проверим возможность установки поезда на приемоотправочных путях по соотношению:

$$l_{\Pi} \leq l_{\Pi O \Pi}$$

где $l_{\it \Pi O \Pi}$ м - длина приемоотправочных путей;

Сделаем вывод по соотношению длины приемоотправочных путей и длины поезда.

Задание 3. Решить тормозную задачу.

Определим максимально допустимую скорость движения на наиболее крутом спуске участка при заданных тормозных средствах и принятом тормозном пути.

Полный тормозной путь определяется по формуле:

$$S_T = S_{\mathcal{I}} + S_{\mathcal{I}},$$

где S_{II} - путь подготовки тормозов к действию, на протяжении которого тормоза поезда условно принимаются недействующими (от момента установки РКМ в тормозное положение до включения тормозов поезда);

 $S_{\mathcal{I}}$ - действительный тормозной путь, на протяжении которого поезд движется с действующими в полную силу тормозами.

Полный тормозной путь $S_T = 1200$ м., (на спусках более 6‰).

Определим путь подготовки тормозов к действию по формуле:

$$S_{\Pi} = 0.278 \cdot v_H \cdot t_{\Pi}$$

где V_H км/ч - скорость в начале торможения;

 t_{Π} - время подготовки тормозов к действию.

Для автотормозов (для составов длиной 200-300осей):

$$t_{_{II}}=10-\frac{15\cdot i_{_{C}}}{b_{_{T}}}$$

где i_C - наиболее крутой спуск;

 b_T Н/кН - удельная тормозная сила при начальной скорости торможения ($V_H = V_{KOHCTP}$ км/ч).

Решив тормозную задачу, мы определим путь подготовки тормозов S_{\varPi} м., и действительный тормозной путь S_{\varPi}

$$S_{\mathcal{I}} = S_T - S_{\mathcal{I}}$$

Сделать вывод по РГР: