При выполнении и оформлении контрольной работы необходимо соблюдать следующие правила.
Варианты задач к контрольной работе ЧАСТЬ №1
Таблица 3
Вариант |
Номера задач |
|||||||
Колебания и волны |
Оптика |
|||||||
0 |
510 |
520 |
530 |
540 |
550 |
610 |
620 |
630 |
1 |
501 |
511 |
521 |
531 |
541 |
601 |
611 |
621 |
2 |
502 |
512 |
522 |
532 |
542 |
602 |
612 |
622 |
3 |
503 |
513 |
523 |
533 |
543 |
603 |
613 |
623 |
4 |
504 |
514 |
524 |
534 |
544 |
604 |
614 |
624 |
5 |
505 |
515 |
525 |
535 |
545 |
605 |
615 |
625 |
6 |
506 |
516 |
526 |
536 |
546 |
606 |
616 |
626 |
7 |
507 |
517 |
527 |
537 |
547 |
607 |
617 |
627 |
8 |
508 |
518 |
528 |
538 |
548 |
608 |
618 |
628 |
9 |
509 |
519 |
529 |
539 |
549 |
609 |
619 |
629 |
Колебания и волны
501. Математический маятник массой 0,2 кг имеет в любой момент времени одну и ту же полную энергию Е=1 мДж. Найти амплитудное значение импульса Рm.
502. Уравнение гармонических колебаний дано в виде:
Х=0,2cos(2πt + π/3), м
Найти какую долю составляет кинетическая энергия от полной энергии в момент времени t= T/6.
503.Точка совершает простые гармонические колебания, уравнение которых X= Asin wt, где А=5см, w=2с-1. В момент времени, когда точка обладала потенциальной энергией П=0,1 мДж, на нее действовала возвращающая сила F=5 мН. Найти этот момент времени t.
504. Материальная точка совершает простые гармонические колебания, так, что в начальный момент времени смещение Хо=4 см, а скорость u0=10 см/с. Определить амплитуду А и начальную фазу φ0 колебаний, если их период Т=2 c.
505. Пружинный маятник массой 0,1 кг с коэффициентом жесткости 1000 Н/м. Написать дифференциальное уравнение колебаний маятника. Найти число полных колебаний маятника за время t=10 с.
506. Уравнение незатухающих колебаний пружинного маятника массой 0,1 кг. имеет вид: Х=5 cos(t+π/6), ρм. Найти период колебаний и кинетическую энергию через время π/6 с. Написать дифференциальное уравнение колебаний маятника.
507. При незатухающих гармонических колебаниях точки ее максимальная скорость равна 0,1 м/с, а максимальное ускорение равно I м/с. Написать уравнение колебаний, считая, что в начальный момент времени смещение максимально.
508. Координата колеблющейся точки массой 0,1 кг изменяется по закону: Х=2cos(4πt+π/4) см. Найти скорость точки и силу, действующую на нее через 0,5 с после начала колебаний. Изобразить на рисунке зависимость F(t).
509. Записать уравнение движения материальной точки в дифференциальном виде, если масса ее равна 10 г, а коэффициент упругости пружины "К" равен 100 Н/м. Записать уравнение колебания точки, если амплитуда А=2 см, а начальная фаза φ0=π/6 πад. Изобразить на рисунке зависимость Х=Ψ(t).
510. Максимальная скорость груза пружинного маятника I м/с масса 0,1 кг амплитуда 1 см. Найти коэффициент жесткости пружины и написать уравнение колебаний, если в начальный момент времени смещение равно нулю. Определить время, за которое груз проходит путь от положения равновесия до половины амплитуды.
511. Дифференциальное уравнение колебаний заряда в контуре имеет вид: Кл/с2. Индуктивность контура 10 мкГн. Найти емкость контура и написать уравнение колебаний заряда, если в начальный момент времени сила тока максимальна и равна 10 мА.
512. Гармонические колебания в электрическом контуре описывается уравнением , В. Индуктивность катушки L =10-2 Гн. Записать вид уравнений колебаний заряда q и тока i.
513. В электрическом контуре изменение тока описывается уравнением: ), A. Записать уравнение колебаний заряда на конденсаторе, определить период колебаний.
514. Гармонические колебания в электрическом контуре начались (t= 0) при максимальном напряжении на конденсаторе Um=15 B и токе, равном нулю на частоте ν =0,5 МГц. Электроемкость конденсатора С=10 нФ. Записать уравнение колебаний тока в контуре.
515. Гармонические колебания в контуре описываются уравнением: , Кл. Записать уравнение колебаний напряжения на пластинах конденсатора и тока. Емкость конденсатора равна С=0,1 нФ.
516. Колебательный контур состоит из конденсатора емкостью 400 нФ и катушки индуктивностью I мГн. Каково максимальное напряжение на обкладках конденсатора, если максимальная сила тока равна 0,5 А? Записать дифференциальное уравнение для колебаний заряда в этом контуре.
517. Индуктивность колебательного контура равна 2 мГн. При какой емкости контур резонирует на длину волны 600 м? Как изменится длина волны, если индуктивность контура увеличить в два раза?
518. Максимальная энергия электрического поля колебательного контура равна 0,02 Дж. При этом разность потенциалов на обкладках конденсатора достигает 400. В. Определить индуктивность катушки колебательного контура, если период собственных колебаний его равен 6ּ10 –5 с.
519. В колебательном контуре, состоящем из индуктивности и емкости ток, изменяется по закону , А. Индуктивность контура 0,6 Гн. Определить емкость конденсатора и максимальную энергию магнитного поля катушки.
520. Определить частоту собственных колебаний, в контуре, состоящем из соленоида длиной 10 см, площадью сечения 5 см2 и плоского конденсатора с площадью пластин 25 см2 и расстоянием между ними 0,2 см. Число витков соленоида 800. Записать дифференциальное уравнение для заряда.
521. Материальная точка участвует в двух колебаниях, проходящих по одной прямой и выражаемых уравнениями: , где А1=1 см, А2=2 см,
. Найти амплитуду А сложного движения, его частоту ν начальную фазу φ0, написать уравнение движения.
522. Точка участвует в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями:. A1=2 cм, А2=3см, ω1=2ω2 . Найти уравнение траектории точки и построить ее на чертеже, показать, направление движения точки.
523. Материальная точка участвует одновременно в двух взаимно- перпендикулярных колебаниях, происходящих согласно уравнениям: . A1=3 cм, А2=2 см, ω1=1 с-1, ω2=1 с-1. Определить траекторию точки. Построить траекторию с соблюдением масштаба, указать направление движения точки.
524. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями где A1=1 cм, А2=1 см ω1=0,5 с-1, ω2=1 с-1.Найти уравнение траектории, построить ее с соблюдением масштаба и указать направление движения.
525. Складываются два колебания одинакового направления и одинакового периода где А1=А2=1 см, ω1=ω2=π ρ-1, τ=0,5 с. Определить амплитуду А и начальную фазу φ0 peзyльтирующeго кoлeбания. Написать его уравнение.
526. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях; уравнения которых: , где А1=2 см, А2=1 см,
. Написать уравнение траектории и построить ее на чертеже, показать направление движения точки.
527. Написать уравнение, являющееся результатом сложения двух одинаково направленных, колебаний: , см.
528. Точка участвует, одновременно в двух взаимно перпендикулярных колебаниях выражаемых уравнениями:. Найти уравнение траектории точки и построить ее на чертеже.
529. Два гармонических колебания, направленных по одной прямой имеющие одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз Dj складываемых колебаний.
530. Записать уравнение, являющееся результатом, сложения двух одинаково направленных колебаний: , cм
531. Колебательный контур имеет катушку индуктивностью 10 мГн, емкость 4 мкФ и сопротивление 2 Ом. Определить логарифмический декремент затухания, частоту собственных колебаний и частоту затухающих колебаний, добротность. Записать уравнение свободных, затухающих колебаний заряда, если начальный заряд на пластинах конденсатора равен 440 мкКл.
532. В контуре, добротность которого равна 100 и собственная частота колебаний 50 кГц, возбуждаются затухающие колебания. Через сколько времени энергия, запасенная в контуре, уменьшится в два раза? Определить коэффициент затухания.
533. Колебательный контур имеет конденсатор емкостью 0,2 мкФ, катушку индуктивности 5 мГн и резистор. При каком логарифмическом декременте затухания разность потенциалов на обкладках конденсатора уменьшится за 1 мс в три раза? Чему равно при этом сопротивление резистора?
534. Колебательный контур содержит конденсатор емкостью 1,2 нФ, катушку индуктивности 6 мкГн и активное сопротивление 5 Ом. Определить: 1) коэффициент затухания колебаний в контуре, 2) логарифмический декремент и добротность контура.
535. За 10 с амплитудное значение заряда на пластинах конденсатора уменьшилось в 10 раз. За какое время амплитудное значение уменьшится в 100 раз? Определить логарифмический декремент и добротность контура, если частота колебания 10 рад/с.
536. Колебательный контур имеет индуктивность 0,01 Гн, емкость 4 мкф и сопротивление 2 Ом. Определить логарифмический декремент затухания, добротность контура. Записать уравнение затухающих колебаний для заряда. Начальный заряд на пластинах конденсатора максимальный и равен 400 мКл.
537. Колебательный контур состоит из конденсатора емкостью 0,2 мкф и катушки индуктивности 5 мГн. При каком логарифмическом декременте затухания разность потенциалов на обкладках конденсатора за 0,001с уменьшится в три раза? Чему равно сопротивление контура.
538. Заряд на пластинах конденсатора меняется по закону: Кл. Определить силу тока в контуре в момент времени t=0. Записать зависимость от времени напряжения на пластинах конденсатора, если емкость его 10-9 Кл.
539. Дифференциальное уравнение колебания заряда в контуре имеет вид: . Найти: 1)время релаксации, добротность контура, 3) написать уравнение изменения заряда со временем, если в начальный момент он максимален и равен 10-9 Кл.
540. Амплитуда затухающих колебаний заряда в контуре за 5 минут уменьшилась вдвое. За какое время, считая от начала движения, амплитудное значение заряда уменьшится в 8 раз?
541. Уравнение незатухающих колебаний дано в виде: У = 4 ·10-2cos6pt, м. Найти смещение от положения равновесия точки, находящейся на расстоянии 75 см от источника колебаний через 0.01 с после начала колебаний. Скорость распространения колебаний 340 м/с.
542. Приемник регистрирует электромагнитную волну от передатчика. Напряженность электрического поля вблизи передатчика описывается уравнением E = 200cos108t, В/м. Напряженность магнитного поля вблизи передатчика описывается уравнением H=100cos108t, А/м. Определить плотность потока электромагнитной энергии вблизи приемника, находящегося на расстоянии 0,25 м от передатчика, в момент времени t=Т/4. Длина волны равна 2 м.
543. Уравнение незатухающих звуковых колебаний дано в виде: Y = 10cos0,5pt, см. Написать уравнение волны, если скорость распространения колебаний 340 м/с, 2). Найти смещение точки, отстоящей на расстоянии 680 м от источника колебаний, через две секунды от начала колебаний.
544. Уравнение незатухающих колебаний дано в виде: Y=cos0,5πt мм. Найти смещение и скорость колеблющейся точки, отстоящей от источника на расстоянии 250 м, в момент времени t=1,5 с. Длина волны равна 1000 м.
545. Уравнение незатухающих колебаний дано в виде: , мм. I) Найти длину волны, 2) Найти разность фаз колебаний для двух точек, отстоящих от источника колебаний на расстояниях Х1=15 м и Х2=20 м.
546. Звуковые колебания, имеющие частоту равную 500 Гц, распространяются в воздухе. Длина волны равна 70 см. Найти скорость распространения колебаний.
547. Найти напряженность электрического поля электромагнитной волны в точке, отстоящей от источника колебаний на расстоянии 0,2 м, для момента времени t=Т/6. Амплитудное значение напряженности электрического поля равно 200 В/м, длина волны равна 0,4 м.
548. Уравнение электромагнитной волны распространяющейся в керосине дано в виде: В/м. Определить длину волны в воздухе и скорость её распространения в керосине, показатель преломления керосина равен 1,3.
549. Волновое уравнение плоской электромагнитной волны в стекле дано в виде: . Определить фазовую скорость электромагнитной волны в стекле и показатель преломления стекла.
550. Уравнение электромагнитной волны, распространяющейся в керосине, дано в виде: , В/м. Определить длину волны в воздухе и скорость ее распространения в керосине, показатель преломления керосина равен 1,3.
Оптика
601. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ= 0,6 мкм равен 0,82 мм. Радиус кривизны линзы R = 0,5 м.
602. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны λ= 500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n= 1,4.
603. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l = 1 см укладывается N = 10 темных интерференционных полос. Длина волны λ = 0,7 мкм.
604. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ = 500 нм. Найти радиус R линзы, если радиус четвертого, темного кольца Ньютона в отраженном свете г4 = 2 мм.
605. На тонкую глицериновую пленку толщиной d= 1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн λ лучей видимого участка спектра (0,4< λ <0,8 мкм), которые будут ослаблены в результате интерференции.
606. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны λ=640 нм, падающим на пластинку нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?
607. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ = 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b = 0,5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, п = 1,6.
608. Плосковыпуклая стеклянная линза с f = 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5 = 1,1 мм. Определить длину световой волны λ.
609. Между двумя плоскопараллельными пластинами на расстоянии L = 10 см от границы их соприкосновения находится проволока диаметром d = 0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (λ = 0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.
610. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (λ = 590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.
611. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1 = 589,0 нм и λ2 = 589,6 нм? Какова длина такой решетки, если постоянная решетки d = 5 мкм?
612. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в п = 4,6 раза больше длины световой волны. Найти общее число М дифракционных максимумов, которые теоретически можно наблюдать в данном случае.
613. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ = 780 нм) спектра третьего порядка?
614. На дифракционную решетку, содержащую n = 600 штрихов на миллиметр длины, падает нормально белый свет. Спектр проецируется помещенной, вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L=l,2 м. Границы видимого спектра λ кр=700 нм, λф=400 нм.
615. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом θ = 650 к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения.
616. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (λ =600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, φ = 20°. Определить ширину а щели.
617. На дифракционную решетку, содержащую п = 100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Dj= 16°. Определить дайну волны λ света, падающего на решетку.
618. На дифракционную решетку падает нормально монохроматический свет (λ = 410 нм). Угол Dj между направлениями на максимумы первого и второго порядков равен 2°21΄. Определить число п штрихов на 1 мм дифракционной решетки.
619. Постоянная дифракционной решетки в п = 4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол α между двумя первыми симметричными дифракционными максимумами.
620. Расстояние между штрихами дифракционной решетки d = 4 мкм. На решетку падает нормально свет с дайной волны λ = 0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?
621. Пластинку кварца толщиной d = 2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол φ=53°. Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным?
622. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.
623. Кварцевую пластинку поместили между скрещенными николями. При какой наименьшей толщине dmin кварцевой пластины поле зрения между николями будет максимально просветлено? Постоянная вращения α кварца равна 27 град/мм.
624. При прохождении света через трубку длиной l1 = 20 см, содержащую раствор сахара концентрацией С1 = 10%, плоскость поляризации света повернулась на угол φ1 = 13,3°. В другом растворе сахара, налитом в трубку длиной l2=15 см, плоскость поляризации повернулась на угол φ2 = 5,2°. Определить концентрацию С2 второго раствора.
625. Пучок света последовательно проходит через два поляризатора, плоскости пропускания которых образуют между собой угол φ = 40°. Принимая, что коэффициент поглощения k каждого поляризатора равен 0,15, найти, во сколько раз пучок света, выходящий из второго поляризатора, ослаблен по сравнению с пучком, падающим на первый поляризатор.
626. Угол падения ε луча на поверхность стекла равен 60°. При этом отраженный пучок света оказался максимально поляризованным. Определить угол e 2 преломления луча.
627. Угол α между плоскостями пропускания поляроидов равен 50°. Естественный свет, проходя через такую систему, ослабляется в n = 8 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах.
628. Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле ε падения отраженный пучок света максимально поляризован?
629. Пучок света переходит из жидкости в стекло. Угол падения ε пучка равен 60°, угол преломления e 2=50°. При каком угле падения εв пучок света, отраженный от границы раздела этих сред, будет максимально поляризован?
630. Пучок света падает на плоскопараллельную стеклянную пластину, нижняя поверхность которой находится в воде. При каком угле падения εв свет, отраженный от границы стекло-вода, будет максимально поляризован?