Теория вероятностей и математическая статистика
Содержание назад  

    СОДЕРЖАНИЕ

Глава 1. Вероятность событий

§1 Пространство элементарных исходов. Операции над событиями. Отношения между событиями.
Задачи для самоконтроля к §1
§2 Классическое определение вероятности. Основные свойства вероятности.
§3 Основные формулы комбинаторики
§4 Общее определение вероятности.
Задачи для самоконтроля к §2,3,4
§5 Условная вероятность
§6 Независимость событий.
Задачи для самоконтроля к §5, 6
§7 Формула полной вероятности
§8 Формула Байеса.
Задачи для самоконтроля к §7, 8
§9 Последовательность испытаний (схема Бернулли ).
Задачи для самоконтроля к §9  
§10 Предельные теоремы в схеме Бернулли. С
10.1 Локальная теорема Муавра - Лапласа.
10.2 Интегральная теорема Муавра - Лапласа.
10.3 Формула Пуассона
10.4 Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.
Задачи для самоконтроля к §10

Глава 2. Случайные величины.

§1 Случайные величины и функция распределения.
§2 Дискретные случайные величины.
2.1 Ряд распределения.
2.2 Функция распределения дискретной С.В.
2.3 Математическое ожидание дискретной случайной величины.
2.4 Дисперсия.
Задачи для самоконтроля к §2
§3 Важнейшие дискретные случайные величины
Задачи для самоконтроля к §3
§4 Непрерывные случайные величины.
4.1 Плотность распределения
4.2 Математическое ожидание и дисперсия непрерывной С.В.
4.3 Квантиль.
Задачи для самоконтроля к §4
§5 Важнейшие непрерывные случайные величины.
5.1 Равномерное распределение
5.2 Экспоненциальное ( показательное) распределение
5.3 Нормальное распределение.
Задачи для самоконтроля к §5
§6 Двумерные случайные величины.
6.1 Дискретная двумерная случайная величина.
6.2 Функция распределения двумерной случайной величины.
6.3 Непрерывные двумерные случайные величины.
§7 Ковариация и корреляция.
Задачи для самоконтроля к §6, 7
§8 Задача о наилучшем линейном прогнозе.
Задачи для самоконтроля к § 8

назад