
Inner-Product Functional Encryption with Fine-Grained Access
Control

Michel Abdalla1,2, Dario Catalano3, Romain Gay4, and Bogdan Ursu5

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@ens.fr

2 INRIA, Paris, France
3 Dipartimento di Matematica e Informatica, Università di Catania, Italy.

catalano@dmi.unict.it
4 Cornell Tech, New York, USA

romain.gay@cornell.edu
5 ETH Zürich, Switzerland.
bogdan.ursu@inf.ethz.ch

Abstract. We construct new functional encryption schemes that combine the access control function-
ality of attribute-based encryption with the possibility of performing linear operations on the encrypted
data. While such a primitive could be easily realized from fully fledged functional encryption schemes,
what makes our result interesting is the fact that our schemes simultaneously achieve all the following
properties. They are public-key, efficient and can be proved secure under standard and well established
assumptions (such as LWE or pairings). Furthermore, security is guaranteed in the setting where ad-
versaries are allowed to get functional keys that decrypt the challenge ciphertext. Our first results are
two functional encryption schemes for the family of functions that allow users to embed policies (ex-
pressed by monotone span programs) in the encrypted data, so that one can generate functional keys to
compute weighted sums on the latter. Both schemes are pairing-based and quite generic: they combine
the ALS functional encryption scheme for inner products from Crypto 2016 with any attribute-based
encryption schemes relying on the dual-system encryption methodology. As an additional bonus, they
yield simple and elegant multi-input extensions essentially for free, thereby broadening the set of ap-
plications for such schemes. Multi-input is a particularly desirable feature in our setting, since it gives
a finer access control over the encrypted data, by allowing users to associate different access policies
to different parts of the encrypted data. Our second result builds identity-based functional encryption
for inner products from lattices. This is achieved by carefully combining existing IBE schemes from
lattices with adapted, LWE-based, variants of ALS. We point out to intrinsic technical bottlenecks to
obtain richer forms of access control from lattices. From a conceptual point of view, all our results can
be seen as further evidence that more expressive forms of functional encryption can be realized under
standard assumptions and with little computational overhead.

1 Introduction . 1
2 Preliminaries . 6
3 Inner-Product FE with Fine-grained Access Control . 8

3.1 FE with simulation, selective security . 9
3.2 FE with adaptive, indistinguishability based security . 17

4 A Lattice-Based Identity-Based Functional Encryption in the Random-Oracle Model 24
5 A Lattice-Based Identity-Based Functional Encryption in the Standard Model 29
6 Multi-Input Inner-Product FE with Rich Access Control . 33
Acknowledgments . 37
A The ALS inner-product functional encryption scheme . 42
B Instantiations of Predicate Encodings . 44
C Instantiations of Function Encodings . 45

mailto:michel.abdalla@ens.fr
mailto:catalano@dmi.unict.it
mailto:romain.gay@cornell.edu
mailto:bogdan.ursu@inf.ethz.ch

1 Introduction

Public-key encryption allows the owner of a secret key sk to decrypt any ciphertext created with respect
to a corresponding public key pk. At the same time, without sk, one should not be able to extract any
information whatsoever about the encrypted plaintext. This all-or-nothing feature is becoming restrictive
nowadays as, in many applications, a much more fine grained access control to data is required. Functional
encryption addresses this need by providing an encryption mechanism where decryption keys are associated
with functions. Specifically, given a ciphertext Enc(m) and a secret key skf associated to some function f ,
the holder of skf learns f(m) and nothing else.

Security for functional encryption is formalized via a variant of the standard indistinguishability notion.
In a nutshell, this notion states that an adversary who is allowed to see secret keys corresponding to functions
f1, . . . fn should not be able to say which of the challenge messages m0 or m1 has been encrypted, as long
as fi(m0) = fi(m1), for all i. This indistinguishability notion has been proposed in [BSW11, O’N10] and
shown inadequate for certain, somewhat complex, functionalities. These authors also suggested an alternative,
simulation based, security notion that however turns out to be impossible to achieve for general functionalities
without introducing additional restrictions. See [BSW11,O’N10] for details.

Since its introduction, functional encryption has attracted a lot of interest. Known results can be broadly
categorized as focusing on (1) feasibility results for general functionalities, and on (2) concrete, efficient
realizations for restricted functionalities of practical interest. Constructions of the first type are all horren-
dously inefficient. Also, they either rely on quite unstable assumptions (e.g. indistinguishability obfuscation)
or impose severe restrictions on the number of secret keys that can be issued. Constructions of the second
type, on the other hand, are known only for the case of linear functions and quadratic functions. Over the
last few years, significant research efforts have been devoted to the quest of improving these constructions
along different directions. For the case of the inner-product functionality (IPFE) [ABDP15], this meant, for
instance, improved security guarantees (e.g. [ALS16,ABDP16,BBL17,CLT18]), function hiding realizations
(e.g. [BJK15, DDM16, DOT18]), multi-input extensions (e.g. [AGRW17, ACF+18]), decentralized schemes
(e.g. [CDG+18,ABKW19,LT19,ABG19]), unbounded-size vectors (e.g. [TT18,DP19]) and specialized vari-
ants (e.g. [BCSW19]). For the case of quadratic functions, current schemes are limited to [BCFG17,Gay20]
in the public-key setting. Note that FE for inner products, which is the focus of this work, can be used a
building block to obtain FE for quadratic functions. This fact, implicit in [BCFG17], is made explicit in
[Gay20] and in the private-key variants [AS17,Lin17].

In spite of these efforts, only a few convincing practical applications of the primitive have been proposed
so far. Notable examples include the recent non interactive protocol for hidden-weight coin flips from [CS19],
a practical construction of function-hiding inner product FE with applications such as in biometric authen-
tication, nearest-neighbor search on encrypted data in [KLM+18], an application of functional encryption
for quadratic functions for performing private inference on encrypted data in [RPB+19].

A possible explanation for this is that, behind its charming theoretical appearance, functional encryption
hides a fragile and potentially dangerous nature: each new released secret key inherently leaks information.
This becomes particularly painful for the case of inner products, as, when encrypting plaintexts of length,
say, n, holding n secret keys allows, in general, to recover the full plaintext completely. While this might
seem inherent in the nature of IPFE, one might wonder if additional measures might be put in place to
reduce leakage and make the primitive more appealing for applications. Think for instance of the case of
a medical database. To preserve privacy while maintaining the possibility of performing simple descriptive
statistics (such as the weighted mean) on the data, one might decide to encrypt the database using IPFE.
A drawback of this solution, however, is that the confidentiality of the whole database is compromised if a
sufficiently large number of different keys is released. This is problematic since this threshold might be easy
to reach when many users access the database.

A natural way to limit the inherent information leakage of existing IPFE schemes would be to use FE
primitives with more sophisticated functionalities. Ideally, this primitive should allow to embed access policies
in the (encrypted) data while allowing to compute weighted sums on the latter. More precisely, each key
should allow to obtain the desired inner product only when some appropriate access policy is satisfied. Going
back to our medical example, this means that the confidentiality of a particular database entry would be

1

compromised only if sufficiently many different keys satisfying the ciphertext policy associated with that
entry are released.

Another way to look at the question, is providing additional security guarantees with respect to basic
identity or attribute based encryption schemes. These typically control who is authorized to decrypt the data.
Still, once the data is accessed, no additional control is possible: authorized users get the full information,
while others get nothing. In this sense, it is natural to consider encryption primitives that, beyond access
control, also permit to more carefully tune the information leakage.

Notice that the mechanisms above are easy to realize if one is willing to resort to functional encryption
schemes for general functionalities. The trouble with this is that such a solution would be of little (if any)
practical interest. Our goal, on the other hand, is to develop a scheme that implements the features above
while retaining as much as possible all the nice properties of currently known IPFEs.

This motivates the following question.

Is it possible to develop an efficient, public-key, functional encryption scheme that allows users both to embed
access policies in the encrypted data and to generate decryption keys to compute inner products on the data?

A trivial generic approach. Since ABE and IPFE are both well-studied primitives, the first natural
question is whether we can easily combine existing schemes to achieve our target notion. In the target
scheme, each ciphertext is associated with a predicate P and encrypts a vector x. Each functional decryption
key sky,att is associated with an attribute att and a vector y. Decryption recovers 〈x,y〉 if P(att) = 1. If it
is not the case, no information about x should be revealed.

Now, consider the approach of encrypting a plaintext via an IPFE and then encrypting the resulting
ciphertext via the ABE. This is not secure against collusions as, once the outer ciphertext is decrypted, the
inner one becomes completely independent from the ABE. To see why, assume we have keys for sky0,att0

and sky1,att0 and a ciphertext ct, encrypting a vector x under the predicate P such that P(att0) = 1 and
P(att1) = 0. The trivial solution allows to use sky0,att0 to obtain the original IPFE ciphertext, which can
then be used with sky1,att1 to obtain 〈x,y1〉 (even though we should only have been able to compute 〈x,y0〉).
This means that mix-and-match attacks are possible. In fact, there seems to be no trivial solution to this
problem.

Our contributions. In this paper, we formalize the notion of inner-product functional encryption with fine-
grained access control and propose realizations that are both efficient and provably secure under standard
and well-established assumptions.

The key distinguishing feature of our constructions is that they can be proved secure in the, technically
more challenging, setting where the adversary is allowed to (get keys to) decrypt the challenge ciphertext.
Let us explain this more in detail. Popular specializations of functional encryption (such as identity-based
encryption (IBE) [Sha84,BF01] and attribute-based encryption [SW05,GPSW06]) are ones where the message
is interpreted as a pair (I,m), where m is the actual message (often called the “payload”) and I is a string,
referred to as the index (or in the context of ciphertext-policy ABE [BSW07], a predicate), that can be either
public or private. For these schemes, confidentiality of the payload is guaranteed as long as no decryption keys
associated with attributes that satisfy the predicate are issued. In our case, we still guarantee a meaningful
security notion when keys which allow users to decrypt the payload are issued.

Private-index schemes also provide meaningful security guarantees when keys that decrypt are leaked,
namely, they still hide the index in that case. However, as opposed to public-index schemes, for which we
have constructions for all circuits from standard assumptions [GVW13, BGG+14], such schemes can only
handle restrictive policies, that are expressed by orthogonality testing (also referred to as inner-product
encryption [KSW08]), or assume a weaker security property, called weak attribute hiding, which limits the
set of keys that the adversary can get. Namely, this property dictates that the adversary is only allowed to ask
secret keys corresponding to functions that cannot be used to decrypt the challenge ciphertext. As observed
in [GVW15], a fully attribute-hiding predicate encryption for circuits would bring us tantalizing close to
getting indistinguishability obfuscation, which explains why they are much harder to realize in practice.

We consider both public-index schemes where policies are expressive (they can be expressed by monotone
span programs, which capture Boolean formulas), and private-index schemes for orthogonality testing (which

2

captures constant depth Boolean formulas). In both settings, we permit a fine-tuned access to the payload,
which, from a technical point of view, involve providing security even when the adversary obtains keys that
decrypt the challenge ciphertext (even in the public-index case).

IP-FE with fine-grained access control from pairings. Our first main result is the construction of
functional encryption schemes for the family of functions that allows users to embed policies on the encrypted
data, so that one can generate decryption keys that computes weighted sums on the latter. More precisely,
in our schemes, each ciphertext is associated with a predicate P and encrypts a (small norm) vector x.
Each functional decryption key is associated with an attribute att and a (small norm) vector y. Decryption
recovers 〈x,y〉 if att satisfies P. If this is not the case, security guarantees that no information about x is
revealed.

Our constructions are quite generic and show that it is possible to combine existing pairing-based
attribute-based encryption with the IPFE from [ALS16]. Our construction relies on any attribute-based
encryption that uses the dual-system encryption methodology [Wat09]. In particular, we provide a modular
framework that turns any ABE that supports the class of predicates P into a functional encryption scheme
for the functions described by an attribute att ∈ U and a vector y, that given as input a vector x and a
predicate P ∈ P, outputs 〈x,y〉 if P(att) = 1 and ⊥ otherwise. For correctness to hold we require that both
x and y are vectors of polynomially-bounded dimension and norm. We consider both the case where the
policy P associated with a ciphertext is public, or at the contrary, remains hidden. As explained previously,
leveraging state of the art pairing-based ABE, we obtain an FE for P described by monotone span programs,
and an FE for P for any constant depth formula, where the formula itself remains hidden.

From a technical point of view, our first realization combines the IPFE from [ALS16] with any predicate
encoding for prime-order pairing groups. In a nutshell, predicate encodings [Wee14, Att14] are one-time
secure, private key, statistical variant of ABE that are much simpler to construct and to deal with. The
resulting construction achieves simulation security, but only in a selective sense, and unfortunately this
happens to be the case even if the underlying building blocks achieve adaptive security. Informally, this
comes from the fact that our security model explicitly allows the adversary to (get keys to) decrypt the
challenge ciphertext. Technically, this means that, throughout the security proof, only functional decryption
keys associated with pairs (att,y) for which P∗(att) = 0 can be turned into semi-functional ones (here
P∗ denotes the predicate chosen by the adversary for the challenge ciphertext). Following the dual-system
encryption methodology, semi-functional keys refer to keys that cannot decrypt successfully the challenge
ciphertext, but can decrypt correctly any other honestly generated ciphertext. Keys for which P∗(att) = 1
cannot be turned semi-functional as otherwise they would fail to (correctly) decrypt the challenge ciphertext.
Such a decryption issue does not arise in typical ABE settings, as their security model explicitly prevents
the adversary to decrypt the challenge ciphertext.

Our second construction circumvents this difficulty and obtains adaptive security by generalizing the
techniques introduced in [OT12], later improved in [CGW18] in the context of fully-hiding predicate encryp-
tion for inner product testing. Indeed, in fully-hiding predicate encryption, the proof also has to explicitly
deal with the decryption issue sketched above. To do so, we introduce the notion of function encoding, which
is the analogue of predicate encoding for functional encryption. Recall that predicate encodings, introduced
in [Att14,Wee14], is a dumbed-down version of ABE, and provides a framework to extend the dual system
encryption methodology introduced by [Wat09] in the context of adaptively-secure IBE to a broad class of
ABE, including inner product testing, or Boolean formulas. In our case, we use the abstraction of function
encoding to generalize of the information-theoretic argument from [CGW18] to capture a broad class of
functional encryption, including inner-product FE with access control expressed by inner-product testing,
Boolean formulas, and more.

Similarly to predicate encoding, which has received significant interest (particularly as its more general
form referred to as Conditional-Disclosure of Secret, e.g. [GIKM00,GKW15,AARV17,LVW17]), we believe
the notion of function encoding could be interesting on its own.

3

Identity-Based inner-product FE from lattices. Our second main result is the construction of two
identity-based inner-product FE (IB-IPFE) from the LWE assumption6. Both schemes combine existing
LWE-based IBE with the LWE-based inner-product FE from [ALS16]. The first one uses the IBE from
[GPV08], where the public key described a trapdoor function for which it is hard to sample short preimage.
Given the trapdoor— the master key of the IBE— it is possible to efficiently compute a short preimage of
any target image. Each identity id yielding a different image, the corresponding preimage, a matrix of short
coefficients M id, defines the user secret key for id. As it turns out, to produce functional decryption keys
associated with identity id and vector y, we can simply give a projection M idy. We prove this remarkably
simple scheme adaptively-secure in the random oracle model using the security argument of [GPV08] to
handle all functional decryption keys that do not decrypt the challenge ciphertext, whereas we use the proof
techniques of [ALS16] to take care of all keys that decrypt the challenge ciphertexts.

Our second constructions relies on the IBE from [ABB10b], where the public key can be used to derive
an identity-based public key pkid for any identity id. The public key pkid describes a trapdoor function, for
which, as in [GPV08], it is hard to compute short preimages. A fixed target image, which belongs to the
range of all the trapdoor functions pkid is made public. The user secret key for id is a short preimage of the
fixed target image, for the function pkid. Once again, user secret keys happen to be matrices, which can be
projected to obtain functional decryption keys skid,y and get an IB-IPFE.

As a bonus, our schemes inherit the anonymity property of the underlying IBE, that is, the identity
associated with a ciphertext remains hidden as long as no functional decryption key that decrypts is issued.

Richer access control from lattices. The puncturing technique that is used in the security proof
of [ABB10b] has been generalized to obtain ABE for all circuits in [BGG+14]. However, there are intrinsic
technical limitations in our proof strategy which prevent from extending our scheme to the ABE case. In
particular, to use the security argument of the IPFE from [ALS16] as part of our own security proof, we
rely on a lazy sampling argument: to obtain a functional decryption key skid?,y where id? is the identity
of the challenge ciphertext, we first sample a matrix with short coefficients M id? and set the fixed public
target image such that this short matrix is a preimage of the target image by the function described by the
public key pkid? . Concretely, the target image is a matrix T , the public key pkid = Aid? is also a matrix,
and we want Aid?M id? = T , where the matrices have matching dimensions. We can first sample T , then use
the trapdoor to compute M id? satisfying the previous equation, but we can also first sample a short M id? ,
and then set T = Aid?M id? . This produces identically distributed matrices, and in the latter case, we can
produce M id? without knowing the trapdoor, which is necessary in the security proof. The matrix M id? will
actually correspond to the master secret key of the IPFE of [ALS16]. The key skid?,y is M id?y, as described
above, which corresponds to a functional decryption key for y in the scheme from [ALS16]. However, this
lazy sampling argument is inherently limited to the case where only one attribute (here, identity) satisfies
the predicate (here, identity) of the challenge ciphertext. In the case of ABE, there can be multiple such
attributes for a given predicate. We leave combining ABE for circuits with inner-product FE as a challenging
open problem.

Multi-input extensions. As a final contribution, we show how to generalize our pairing-based IP-FE
scheme to the multi input setting. Our realization is rather generic in the sense that it converts any single
input construction of the primitive, satisfying few additional properties, into a multi input scheme supporting
the same class of functionalities. Specifically, the required properties are that (1) the underlying IP-FE is
pairings-based (2) its encryption and key generation algorithms can take as input large norm vectors and
(3) its encryption algorithm enjoys linearly homomorphic properties. Recall that, to guarantee efficient
decryption, our parings based constructions require that both the plaintext vectors x and the function
vector y have small norm. What we require now is that, if one is willing to give up efficient decryption,
the small norm condition can be relaxed (i.e. decryption returns an encoding of the output rather than the
output itself).

6We stress that both schemes support exponentially large input domains, as for existing LWE-based inner-product
FE schemes.

4

On a technical level the transformation follows very closely the generic single-input to multi-input IP-FE
transform by Abdalla et al. [ACF+18,AGRW17]. In this sense, we believe that the interesting contribution is
the primitive itself. Indeed, information leakage is even more problematic in the multi input setting, as here
users can combine their inputs with many different ciphertexts coming from other users. In the case of n users
this easily leads to an information leakage that completely destroys security. While countermeasures could
be put in place to limit the encryption and key queries that the adversary is allowed to ask, by resorting
for instance, to the notion of multi-client IPFE, where ciphertexts are associated with time-stamps, and
only ciphertext with matching time-stamps can be combined (e.g. [CDG+18]) we believe that our proposed
primitive provides a more general and versatile solution to the problem.

Our construction allows users to compute weighted sums on encrypted vectors each associated with a
possibly different access structure. In our medical example above, this might be used to add even more
granularity to the access control of data. That is, some users may obtain keys that can compute statistics
on some, but not all, the encrypted data. For instance, doctors in a hospital may be able to compute on a
different set of encrypted data then employees of a health insurance company. Moreover, multi-input allows
users to aggregate data coming from different sources.

Related Works. We emphasize that the primitive considered in this paper is natural, and as such, it has
also been considered in previous works, either implicitly or explicitly.

In [DP19], Dufour-Sans and Pointcheval describe an identity-based functional encryption scheme for inner
products as a byproduct of their realization of unbounded IPFE with succinct keys. Their construction is
proven selectively secure in the random-oracle model based on the standard decisional bilinear Diffie-Hellman
assumption. Compared to their construction, our pairing-based schemes provide support for significantly
richer functionalities and are proven secure in the standard model.

In [JLMS19,AJKS18, JLS19], the authors define restricted versions of secret-key functional encryption
schemes allowing for the computation on three inputs (x, y, z), where the input x is seen as a public attribute
and the other two remain hidden. The construction of [AJKS18] only supports multilinear polynomials,
whereas [JLMS19] supports polynomials that have degree 1 in y, z, and constant degree on x. Finally,
[JLS19] supports arbitrary NC1 computation on the public input x, degree 1 in y, z. These constructions are
proven secure in the generic bilinear group model, and are used (along with other objects and assumptions)
to construct indistinguishability obfuscation.

Like the notion being considered in this paper, the restricted functional encryption notions in [JLMS19,
AJKS18] captures the combination of attribute-based encryption and functional encryption, allowing for the
computation of functions over two of the inputs using the third input as a public index. While theirs is
in the secret-key setting and allows for the evaluation of quadratic polynomials with policies described by
constant-degree polynomials (i.e., NC0), our constructions are in the public-key setting and allows for the
evaluation of linear functions with policies expressed by monotone span programs. Our techniques inherently
rely on the linearity of the inner-product functionality, and we leave as an exciting open problem to build
public-key schemes that combines attribute-based encryption with degree-2 functional encryption.

In an independent work [CZY19], Chen, Zang and Yiu propose a construction of attribute-based func-
tional encryption for inner products. Like ours, their construction is pairing-based, but it is less generic,
and relies on three decisional assumptions on bilinear groups of composite order N = p1p2p3 (p1, p2, p3

distinct primes), which are less efficient than prime-order groups. Our realizations, on the other hand, build
generically from any dual system encryption-based ABE. In terms of security, their construction guarantees
indistinguishability against adaptive adversaries in the standard model, but only in the weaker setting dis-
cussed above, where keys that decrypt cannot be leaked to the adversary, which does not capture the essence
of the new notion, since it does not offer any additional security guarantees with respect to standard ABE
schemes. We recall that all our schemes explicitly allow the adversary to get functional keys to decrypt the
challenge ciphertext. Also, while our first scheme is only selectively secure, it achieves this in the stronger
simulation setting. Finally, no extensions to the multi-input case are considered in [CZY19].

In [Wee17], Wee builds partially hiding predicate encryption schemes which simultaneously generalize
existing attribute-based and inner-product predicate encryption schemes. Although his constructions support
a larger class of policies than our constructions, the decryptor still has access to the payload message (a KEM

5

key in this case) once the access policy is satisfied or to a uniformly random value otherwise. We see it as an
interesting open problem to extend his work to also permit selective computations over the payload message
when the access policy is satisfied.

Organization. Section 2 recalls some standard notation together with the syntax and security definitions for
functional encryption schemes. Section 3 presents our constructions of inner-product FE with fine-grained ac-
cess control from pairings. Section 4 describes our first lattice-based construction of identity-based functional
encryption in the random-oracle model. Due to space constraints, some additional results and additional ba-
sic definitions are only being presented as supplementary material. In particular, Section 5 describes the
lattice-based standard-model construction of identity-based functional encryption and Section 6 presents a
multi-input extension of our schemes.

2 Preliminaries
Notation. We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT) algorithm A
is a randomized algorithm for which there exists a polynomial p(·) such that for every input x the running
time of A(x) is bounded by p(|x|). We say that a function ε : N → R+ is negligible if for every positive
polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ). If S is a set, x ←r S denotes
the process of selecting x uniformly at random in S. If A is a probabilistic algorithm, y ←r A(·) denotes
the process of running A on some appropriate input and assigning its output to y. For a positive integer n,
we denote by [n] the set {1, . . . , n}. We denote vectors x = (xi) and matrices A = (ai,j) in bold. For a set
S (resp. vector x) |S| (resp. |x|) denotes its cardinality (resp. number of entries). Also, given two vectors x
and x′ we denote by x‖x′ their concatenation. By ≡, we denote the equality of statistical distributions, and
for any ε > 0, we denote by ≈ε the ε-statistical difference of two distributions. For any x ∈ R, we denote
by bxc the largest integer less than or equal to x, while for any z ∈ [0, 1], we denote by bze the closest
integer to z. For all ai ∈ Znip for i ∈ [n], we denote by (a1, . . . ,an) ∈ Z

∑
i∈[n] ni

p a column vector, and by

(a>1 | · · · |a>n) ∈ Z
1×

∑
i∈[n] ni

p a row vector.

2.1 Pairing groups

Let PGGen be a PPT algorithm that on input the security parameter 1λ, returns a description PG = (G1,
G2,GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is an additive cyclic group of order p for a 2λ-bit prime
p. G1 and G2 are generated by P1 and P2 respectively, and e : G1 × G2 → GT is an efficiently computable
(non-degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT , of order p. We use implicit
representation of group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit
representation of a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit
representation of A in Gs:

[A]s :=

a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

 ∈ Gn×ms .

Given [a]1 and [b]2, one can efficiently compute [a ·b]T using the pairing e. For matrices A and B of matching
dimensions, define e([A]1, [B]2) := [AB]T . For any matrix A,B ∈ Zn×mp , any group s ∈ {1, 2, T}, we denote
by [A]s + [B]s = [A + B]s.

For any prime p, we define the following distributions. The DDH distribution over Z2
p: a←r Zp, outputs

a :=
(

1
a

)
. The DLIN distribution over Z3×2

p : a, b←r Zp, outputs A :=

a 0
0 b
1 1

.

Definition 2.1 (DDH assumption). For any adversary A, any group s ∈ {1, 2, T} and any security
parameter λ, let

AdvDDH
Gs,A(λ) := |Pr[1← A(PG, [a]s, [ar]s)]− Pr[1← A(PG, [a]s, [u]s)]|,

6

where the probabilities are taken over PG ←r GGen(1λ, d), a←r DDH, r ←r Zp, u←r Z2
p, and the random

coins of A. We say DDH holds in Gs if for all PPT adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Definition 2.2 (SXDH assumption). For any security parameter λ and any pairing group PG = (G1,
G2,GT , p, P1, P2, e)←r PGGen(1λ), we say SXDH holds in PG if DDH holds in G1 and G2.

2.2 Functional Encryption

Definition 2.3 (Functional Encryption [BSW11,O’N10]). Let F be a family of functions, with f ∈ F
defined as f : X → Y. A functional encryption scheme for F consists of the following algorithms:

– Setup(1λ,F): takes as input the security parameter λ and a description of the function family F , and
outputs a master public key mpk and a master secret key msk. The master public key mpk is assumed to
be part of the input of all the remaining algorithms.

– Enc(x ∈ X): takes as input the master public key mpk and a message x ∈ X , and it outputs a ciphertext
ct.

– KeyGen(msk, f ∈ F): takes as input the master secret key msk, a function f ∈ F , and it outputs a
decryption key skf .

– Dec(skf , ct): takes as input a decryption key skf along with a ciphertext ct, and it outputs a value y ∈ Y
or the special symbol ⊥ if it fails.

A scheme as defined above is correct if for all security parameter λ, x ∈ X , and f ∈ F , we have: Pr[Dec(skf ,
ctx) = f(x)] = 1] where the probability is taken over (mpk,msk) ← Setup(1λ,F), skf ← KeyGen(msk, f),
ctx ← Enc(x).

Partial information. For the rest of this paper, it is convenient to split the output of the function in
two parts: (f(x), part(x)), where part(x) is some partial information on x that is independent from f . For
instance, we will consider the case of x := (P,x), where P is a predicate, and x ∈ Zd is a vector of dimension
d; each function is described by a pair (att,y) where att is an attribute, and y ∈ Zd. The output f(x) reveals
x>y and P if P(att) = 1; only P otherwise. Note that the information P is always revealed, no matter the
function. Considering this part of the input separately will be helpful later.

Security notions. We first recall the selective indistinguishability variant for the security of functional
encryption here.

Definition 2.4 (SEL-IND security). For every functional encryption FE, every security parameter λ,
every stateful adversary A, we define the following experiments for β ∈ {0, 1}:

Experiment SEL-INDFEβ (1λ,A):

(x0, x1)← A(1λ,F)
(mpk,msk)← Setup(1λ,F)
ct? ← Enc(xβ)
β′ ← AOKeyGen(·) (mpk, ct?)
Output: β′

where OKeyGen(·) is an oracle that on input f ∈ F , outputs KeyGen(msk, f). Additionally, if A ever calls the
oracle KeyGen on an input f ∈ F , the challenge queries x0, x1 must satisfy: f(x0) = f(x1) and part(x0) =
part(x1).

A functional encryption scheme FE is SEL-IND-secure if for every PPT adversary A, the following
advantage is a negligible function of λ:

AdvSEL-INDFE,A (λ) =
∣∣Pr

[
SEL-INDFE0 (1λ,A) = 1

]
− Pr

[
SEL-INDFE1 (1λ,A) = 1

]∣∣
7

Now we give the adaptive, indinstinguishability based variant of security for FE. It is the same as the
previous definition, except the challenge (x0, x1) can be chosen adaptively, after seeing the public key and
querying functional decryption keys.

Definition 2.5 (AD-IND security). For every functional encryption FE, every security parameter λ,
every stateful adversary A, we define the following experiments for β ∈ {0, 1}:

Experiment AD-INDFEβ (1λ,A):

(mpk,msk)← Setup(1λ,F)
(x0, x1)← AOKeyGen(·)(1λ,F)
ct? ← Enc(xβ)
β′ ← AOKeyGen(·) (mpk, ct?)
Output: β′

where OKeyGen(·) is an oracle that on input f ∈ F , outputs KeyGen(msk, f). Additionally, if A ever calls the
oracle KeyGen on an input f ∈ F , the challenge queries x0, x1 must satisfy: f(x0) = f(x1) and part(x0) =
part(x1).

A functional encryption scheme FE is AD-IND-secure if for every PPT adversary A, the following
advantage is a negligible function of λ:

AdvAD-INDFE,A (λ) =
∣∣Pr

[
AD-INDFE0 (1λ,A) = 1

]
− Pr

[
AD-INDFE1 (1λ,A) = 1

]∣∣
We now give the simulation-based, selective security. Note that simulation security straightforwardly

implies indistinguishable security.

Definition 2.6 (SEL-SIM security). For any FE scheme FE for functionality F , any security parameter
λ, any PPT stateful adversary A, and any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen), we define the following
two experiments.

RealFEA (1λ):
x? ← A(1λ)
(mpk,msk)← Setup(1λ,F)
ct? ← Enc(x?)
α← AOKeyGen(·)(mpk, ct?)

IdealFEA,S(1λ):
x? ← A(1λ)

(m̃pk, m̃sk)← S̃etup(1λ,F)

ct? ← Ẽnc(m̃sk, part(x?))

α← AOKeyGen(·)(m̃pk, ct?)

In the real experiment, the key generation oracle OKeyGen, when given as input f ∈ F , returns KeyGen(msk, f).
In the ideal experiment, the key generation oracle OKeyGen, when given as input f ∈ F , computes f(x?),
and returns K̃eyGen(m̃sk, part(x?), f, f(x?)), where part(x?) denotes the partial information on x?.

We say an FE scheme is SEL-SIM secure if for all PPT adversaries A, there exists a PPT simulator
S := (S̃etup, Ẽnc, K̃eyGen) such that

AdvSEL-SIMFE,A (λ) := |Pr[1← RealFEA (1λ)]− Pr[1← IdealFEA,S(1λ)]| = negl(λ).

3 Inner-Product FE with Fine-grained Access Control

In this section, we present functional encryption schemes for the family of functions that allows users to
embed access policies in the encrypted data, and generate functional decryption keys that compute weighted
sum on the latter. Namely, each ciphertext is associated with a predicate P, and encrypts a vector x ∈ [0, B]d

for some dimension d and some bound B. Each functional decryption key is associated with an attribute
att and a vector y ∈ [0, B]d. Decryption recovers the inner product x>y ∈ [0, dB2] together with P if the

8

attribute att satisfies the predicate P. Otherwise, it only recovers the predicate P, but no information about
the encrypted vector x is revealed.

We show it is possible to combine existing pairing-based ABE together with the inner-product FE from
[ALS16]. Our generic construction works on any ABE that relies on the dual system encryption methodology,
originally put forth by [Wat09]. Namely, any such ABE that supports the class of predicates P, can be turned
into an FE scheme for the family Fipfe(d,B),P := U× [0, B]d of functions described by an attribute att ∈ U and
a vector y ∈ [0, B]d, that given as input a predicate P ∈ P where P : U → {0, 1} and a vector x ∈ [0, B]d,
returns x>y ∈ [0, dB2] if P(att) = 1, 0 otherwise. Note that this can be compactly written as P(att)·x>y. We
will consider the case where the partial information that is leaked about (P,x) is P, which corresponds to the
case of ABE with public indices, but also the case where the predicate itself is hidden, which corresponding
to the case of predicate encryption, also referred to as ABE with private indices. For correctness, we require
the bound B and the dimension d to be polynomially bounded.

We first give a scheme that builds upon any predicate encoding, a one-time secure, private-key, statistical
variant of ABE, introduced in [Wee14,Att14], later refined in [Att16,AC16,AC17,ABS17] for prime-order
pairing groups. Building a predicate encoding is much easier than directly building an attribute based
encryption, since the heavy machinery that is being used to prove security of the resulting ABE is taken
care of by these modular frameworks. We follow this line of work by giving a definition of predicate encoding
which is essentially that of [CGW15]. For simplicity, we leave the question of using more general predicate
encodings, such as those from [AC17], which capture a larger class of ABE, as future work. Our modular
construction is general enough to capture identity-based encryption, inner-product predicate encryption, and
monotone span programs, whose concrete predicate encodings are given in Appendix B.

3.1 FE with simulation, selective security

First, we recall the definition of predicate encodings.

Definition 3.1 (predicate encoding). Let P be a family of predicates and p be a prime. A predicate
encoding for (P,Zp) is given by the following polynomial-time deterministic algorithms:

– Param(P): takes as input the family of predicates P, and returns the parameters (n, |ct|, |sk|) ∈ N3.
– EncCt(P): takes as input a predicate P ∈ P, and returns a matrix C ∈ Zn×|ct|p .
– EncKey(att): takes as input an attribute att ∈ U , and returns a matrix K ∈ Z(n+1)×|sk|

p .
– Decode(P, att): takes as input a predicate P ∈ P, an attribute att ∈ U , and returns a vector d ∈ Z|ct|+|sk|p .

We require the following properties.

Correctness. If P ∈ P and att ∈ U such that P(att) = 1, C := EncCt(P) ∈ Zn×|ct|p , K := EncKey(att) ∈

Z(n+1)×|sk|
p , d := Decode(P, att), then

(
0
C

K

)
d = (1, 0, . . . , 0) ∈ Zn+1

p , where 0 ∈ Z1×|ct|
p .

Security. If P ∈ P and att ∈ U such that P(att) = 0, then the following are identically distributed:

(α|v1| · · · |vn)

(
0
C

K

)
and (0|v1| · · · |vn)

(
0
C

K

)
,

where α, v1, . . . , vn ←r Zp.

Example: Identity-Based Encryption.

– Param(IBE): takes as input the family of predicates I, where each predicate is described by an identity
id ∈ I, and returns 1 when given as an input an identity id′ such that id′ = id, returns 0 otherwise. It
returns the parameters (n = 2, |ct| = 1, |sk| = 1) ∈ N3.

– EncCt(id): given id ∈ I, returns a matrix C = (1, id) ∈ Z2×1
p such that (v1|v2)C = v1 + idv2 ∈ Zp.

– EncKey(id): given id ∈ I, returns a matrixK = (1, 1, id) ∈ Z3×1
p such that (α|v1|v2)K = α+v1+idv2 ∈ Zp.

– Decode(id, id′): if id = id′, it returns the vector d :=
(−1

1

)
∈ Z2

p.

Our simulation, selectively secure FE is described in Fig. 1.

9

Correctness. Observe that for all predicates P ∈ P, the vector [(W>
1 c1| . . . |W>

n c1)]1 ∈ G2×n
1 can be

computed frommpk and the randomness s←r Zp used by the encryption algorithm to compute [c1]1 := [as]1.
Then, the encryption algorithm multiplies the resulting vector by the matrix C := EncCt(P) ∈ Zn×|ct|p to
obtain [C2]1 ∈ G2×|ct|

1 . Similarly, for all attributes att ∈ U , the vector [(Uy|W1k1| . . . |Wnk1)]2 ∈ G2×(n+1)
2

can be computed from mpk, msk, and the randomness r ←r Zp used by the key generation algorithm to
compute [k1]2 := [br]2. Then, the key generation algorithm multiplies the resulting vector by the matrix
K := EncKey(att) ∈ Z(n+1)×|sk|

p to obtain [K2]1 ∈ G2×|sk|
2 .

Let P ∈ P and att ∈ U such that P(att) = 1, x,y ∈ [0, B]d, (P, [c1]1, [C2]1, [c3]1) ←r Enc(mpk,P,
x), and (att,y, [k1]2, [K2]2) ←r KeyGen(msk, att,y). The values computed by the decryption algorithm
are such that [d>1]T := [(c>1 W1k1| . . . |c>1 Wnk1)C]T ∈ G1×|ct|

T , where C := EncCt(P) ∈ Zn×|ct|p , and
[d>2]T := [(c>1 Uy|c>1 W1k1| . . . |c>1 Wnk1)K]T ∈ G1×|sk|

T , where K := EncKey(att) ∈ Z(n+1)×|sk|
p . Thus, by

correctness of the predicate encoding (Param,EncCt,EncKey,Decode), we have [γ]T := [c>1 Uy]T ∈ GT . To

see why, please note that, since d>1 = (c>1 W1k1| . . . |c>1 Wnk1)C = (c>1 Uy|c>1 W1k1| . . . |c>1 Wnk1)

(
0
C

)
,

γ = (d>1 |d>2)d = (c>1 Uy|c>1 W1k1| . . . |c>1 Wnk1)

(
0
C

K

)
d = (c>1 Uy|c>1 W1k1| . . . |c>1 Wnk1) · (1|0| . . . |

0])> = c>1 Uy. Therefore, [out]T = [x>y]T . Finally, assuming the value B2d is polynomial in the security
parameter, the decryption can efficiently recover the discrete logarithm out from [out]T .

Setup(1λ,Fipfe(d,B),P):

PG = (G1,G2,GT , p, P1, P2, e) ← PGGen(1λ), a, b ←r DDH, U ←r Z2×d
p , (n, |ct|, |sk|) ← Param(P), for all i ∈ [n],

Wi ←r Z2×2
p , mpk :=

(
[a]1, [b]2, [U

>a]1, {[W>
i a]1, [Wib]2}i∈[n]

)
, msk := U. Return (mpk,msk).

Enc(mpk,P,x):

s ←r Zp, [c1]1 := [as]1, C := EncCt(P) ∈ Zn×|ct|p , [C2]1 := [(W>
1 c1| . . . |W>

n c1)C]1, [c3]1 := [x + U>c1]1. Return
(P, [c1]1, [C2]1, [c3]1) ∈ P ×G2

1 ×G2×|ct|
1 ×Gd1

KeyGen(msk, att,y):

r ←r Zp, [k1]2 := [br]2, K := EncKey(att) ∈ Z(n+1)×|sk|
p , [K2]2 := [(Uy|W1k1| . . . |Wnk1)K]2, Return

(att,y, [k1]2, [K2]2) ∈ U × [0, B]d ×G2 ×G2×|sk|
2

Dec
(
(P, [c1]1, [C2]1, [c3]1), (att,y, [k1]2, [K2]2)

)
:

[d1]T := e([C2]
>
1 , [k1]2) ∈ G|ct|T , [d>2]T := e([c1]

>
1 , [K2]2) ∈ G1×|sk|

T , d := Decode(P, att), [γ]T := [(d>1 |d>2)d]T ∈ GT ,
[out]T := e([c3]

>
1 , [y]2)− [γ]T . Return out.

Fig. 1. A selectively-secure FE from pairings, for the function family Fipfe(d,B),P .

Theorem 3.2 (SEL-SIM security). If the underlying predicate encoding is secure, then the FE scheme
from Fig. 1 is SEL-SIM secure. Namely, for any PPT adversary A, there exist PPT adversaries B1 and B2

such that:
AdvSEL-INDFE,A (λ) ≤ AdvDDH

G1,B1
(λ) + 2Q · AdvDDH

G2,B2
(λ) + 1

p ,

where Q denotes the number of queries to OKeyGen.

Proof. The proof goes over a series of hybrid games, defined in Fig. 4. Let A be a PPT adversary. For any
such game G, we denote by AdvG(A) the probability Pr[1 ←r G(A)], that is, the probability that the game
outputs 1 when interacting with A. The probability is taken over the random coins of A and the game G
itself. For an overview of the ciphertext and key distributions in the proof, see Figs. 2 and 3.

10

Ciphertext [c1]1 [C2]1 [c3]1 Hybrid
Normal [as]1, s←r Zp [(W>

1 c1| . . . |W>
n c1)C]1 [x? +U>c1]1 G0

SF [c1]1 ←r G2
1 [(W>

1 c1| . . . |W>
n c1)C]1 [x? +U>c1]1 G1

Simulated c1 ←r Z2
p \ span(a) [(W>

1 c1| · · · |W>
n c1)C]1 [U>c1]1 IdealFEA,S(1

λ)

Fig. 2. Overview of ciphertext distributions appearing in the proof of Theorem 3.2, with changes between hybrids
highlighted with a gray background. SF stands for semi-functional. Here, C := EncCt(P?).

Type of jth Key Remark [k1]2 [K2]2 Hybrid
Normal r ←r Zp [br]2 [(Uy|W1k1| · · · |Wnk1)K]2 G0

Pseudo if P?(att) = 0 [k1]2 ←r G2
1 [(Uy|W1k1| · · · |Wnk1)K]2 Hj−1.2

Pseudo SF if P?(att) = 0 [k1]2 ←r G2
1 [(Ũy|W1k1| · · · |Wnk1)K]2 Hj−1.7

SF if P?(att) = 0 [br]2 [(Ũy|W1k1| · · · |Wnk1)K]2 Hj+1

Simulated if P?(att)=0 [br]2 [(Ũy|W1k1| · · · |Wnk1)K]2 IdealFEA,S(1
λ)

Simulated if P?(att)=1 [br]2 [(−y>x? · a⊥ +Uy|W1k1| · · · |Wnk1)K]2 IdealFEA,S(1
λ)

Fig. 3. Overview of key distributions appearing in the proof of Theorem 3.2, with changes between hybrids highlighted
with a gray background. SF stands for semi-functional. Throughout the figure, K = EncKey(att).

Game G0: is the same as RealFEA (1λ) from Definition 2.6.
Game G1: in this game, the challenge ciphertext is switched to the semi-functional distribution (see Fig. 2).

Namely, the vector [c1]1 contained in the challenge ciphertext is switched to uniformly random over G2
1,

using the DDH assumption. The game is described fully in Fig. 4 and is indistinguishable from G0 by
Lemma 3.3.

Lemma 3.3. There exists a PPT adversary B1, such that:

|AdvG1(A)− AdvG0(A)| ≤ AdvDDH
G1,B1

(λ).

Proof. The PPT adversary B1 receives the DDH challenge ([a]1, [z]1) where a←r DDH, [z]1 := [as]1 with
s←r Zp or [z]1 ←r G2

1, then samples Wi ←r Z2×2
p , U←r Z2×d

p , b←r DDH and simulates the experiment
for A in the following way:

Simulation of the master public key: Since B1 samples U and Wi himself, he can use the encod-
ing [a]1 to compute [U>a]1 and {[W>

i a]1}i∈[n]). Then B1, computes
(
[Wib]2}i∈[n]

)
and outputs mpk :=(

[a]1, [b]2, [U
>a]1, {[W>

i a]1, [Wib]2}i∈[n]

)
.

Simulation of the encryption challenge: Adversary B1 sets [c1]1 := [z]1, C := EncCt(P), [C2]1 :=
[(W>

1 z| . . . |W>
n z)C]1, [c3]1 := [x? + U>z]1, and returns (P, [c1]1, [C2]1, [c3]1). When B1 gets a DDH chal-

lenge of the form [z]1 := [as]1 with s←r Zp, it simulates G1, whereas it simulates G2 when [z]1 is uniformly
random over G1.

Simulation of the functional keys: B1 generates the keys straightforwardly as described in G0, using
the matrix U, {Wi}i∈[n], and b.

ut

Game G2: in this game, all the functional decryption keys associated with an attribute att such that
P?(att) = 0 are switched to semi-functional (see Fig. 3). That is, for these keys, the matrix Ũ (de-
fined in Fig. 4) is used in place of the master secret key U. Note that the matrix Ũ, as opposed to the
master secret key U, can be computed (information theoretically) from mpk only. These semi-functional
keys decrypt successfully normal ciphertexts (which can be produced from mpk), but fail to decrypt
semi-functional ciphertexts.

11

G0, G1, G2 :

(P?,x?)← A(1λ)
PG ← PGGen(1λ), a, b ←r DDH, U ←r Z2×d

p , (n, |ct|, |sk|) ← Param(P), for all i ∈ [n], Wi ←r Z2×2
p ,

mpk :=
(
[a]1, [b]2, [U

>a]1, {[W>
i a]1, [Wib]2}i∈[n]

)
u0 := U>a

‖a‖22
∈ Zdp, Ũ := au>0 ∈ Z2×d

p

ct? ← OEnc(P?,x?)
b← AOKeyGen(·)(mpk, ct?)

OEnc(P?,x?):

s ←r Zp, [c1]1 := [as]1, [c1]1 ←r G2
1 , C := EncCt(P?), [C2]1 := [(W>

1 c1| . . . |W>
n c1)C]1, [c3]1 := [x? + U>c1]1.

Return (P?, [c1]1, [C2]1, [c3]1)

OKeyGen(att,y):
r ←r Zp, [k1]2 := [br]2, K := EncKey(att), [K2]2 := [(Uy|W1k1| · · · |Wnk1)K]2,

If P?(att) = 0, then [K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2 . Return (att,y, [k1]2, [K2]2)

Fig. 4. Hybrid games for the proof of Theorem 3.2.

To switch keys from normal to semi-functional, we use a hybrid argument across keys, where each key
is first switched to a high entropy distribution, typically referred to as pseudo mode in the dual system
methodology [Wat09], where the vector [k1]2 contained in the key is switched to uniformly random over
G2

2, using the DDH assumption. At this point, the proof relies on the security of the predicate encoding to
switch the key a semi-functional distribution. After this statistical transition, the vector [k1]2 is switched
back to its original distribution, and the proof proceeds to the next key. Details of the transition from
game G1 to game G2 are given in Lemma 3.4.
Even though the hybrid argument used here is standard in the context of dual system encryption, the
crucial difference is that only the keys associated with att such that P?(att) = 0 can be switched to semi-
functional. The other keys should actually decrypt the challenge ciphertext properly. This is the reason
the experiment needs to know in advance the value P?, so as to determine which key can be switched. For
the keys that cannot be switched, we use a security argument similar to that used in [ALS16] instead.

Lemma 3.4 (From Game G1 to game G2). There exists a PPT adversary B2 such that:

|AdvG1(A)− AdvG2(A)| ≤ 2Q · AdvDDH
G2,B2

(λ) + 3Q
p ,

where Q denotes the number of queries to OKeyGen.

Proof. The proof goes over a series of hybrid games, defined in Fig. 5. Let A be a PPT adversary. For
any such game H, we denote by AdvH(A) the probability Pr[1 ←r H(A)], that is, the probability that
the experiment outputs 1 when interacting with A.
Game Hj−1: this game is the same as G1, except that the first j−1 queries to OKeyGen are answered as

in G2. Thus, the game H0 is the same as G1 and HQ is the same as G2, where Q denotes the number
of queries to OKeyGen. We show that for all j ∈ [1, Q], the games Hj−1 and Hj are computationally
indistinguishable, using the intermediate hybrid games Hj−1.1 and Hj−1.2, defined in Fig. 5.

Game Hj−1.1: this game is the same as Hj−1, except that the j-th functional decryption key is switched
to a high entropy distribution, where the vector [k1]2 is switched to uniformly random over G2

2. This is
referred to as the pseudo distribution in Fig. 3. Recall that the key is associated to attributes att. The
functional key is changed only if P?(att) = 0, where P? is the predicate of the challenge ciphertext.
If the j-th functional decryption key is associated with an attribute att such that P?(att) = 1, then

12

we make no changes and move on to Hj.1. Let’s consider now the case P?(att) = 0. We build an
adversary Bj.1 such that:

|AdvHj−1
(A)− AdvHj−1.1

(A)| ≤ AdvDDH
G2,Bj.1(λ).

Upon receiving the DDH challenge ([b]2, [z]2) where b ←r DDH, [z]2 := [br]2 with r ←r Zp or
[z]2 ←r G2

2, Bj.1 samples Wi ←r Z2×2
p for all i ∈ [n], U ←r Z2×d

p , upon which it can simulate the
experiment for A straightforwardly. When [z]2 := [br]2, Bj.1 simulates Hj−1, whereas it simulates
Hj−1.1 when [z]2 is uniformly random over G2

2.
Game Hj−1.2: In this game, we change the distribution of the vector [k1] used in the j-th functional

decryption key from uniformly random over G2
2 to uniformly random over G2

2 \ span([b]2). Since the
size of span([b]2) is at most p, while the size of G2

2 is p2, this change only induces a statistical change
of 1/p. Namely, we obtain:

|AdvHj−1.1(A)− AdvHj−1.2(A)| ≤ 1
p .

Game Hj−1.3: Consider first orthogonal vectors a⊥, b⊥, such that a⊥ ←r Z2
p \ {0}, b⊥ ←r Z2

p \ {0}
with a>a⊥ = 0 and b>b⊥ = 0. In this game, we change for every i ∈ [n], the distribution of matrices
Wi to Wi + vi · a⊥(b⊥)>, with vi ←r Zp. We use the fact that for all a⊥, b⊥ ∈ Z2

p, the following
distributions are identical:

{Wi}i∈[n] and {Wi + vi · a⊥(b⊥)> }i∈[n],

where for all i ∈ [n],Wi ←r Z2×2
p , vi ←r Zp. This is because eachWi is uniformly random over Z2×2

p .
The leftmost distribution corresponds to Hj−1.2, whereas the rightmost distribution corresponds to
Hj−1.3. Namely, in the latter case, we can write the challenge ciphertext as: (P?, [c1]1, [C2]1, [c3]1),
with [c1]1 ←r G2

1, [c3]1 = [x? + U>c1]1, and:

[C2]1 := [(W>
1 c1 + v1 · b⊥(a⊥)>c1 | · · · |W>

n c1 + vn · b⊥(a⊥)>c1)C]1

= [(W>
1 c1| · · · |W>

n c1)C]1 +
[(
b⊥(a⊥)>c1

)
· (v1| · · · |vn)C

]
1

where C := EncCt(P?).
For all keys of index i 6= j, the corresponding k1 is in the span of b (i.e. k1 ∈ span(b)), thus, we have
that (b⊥)>k1 = 0, and the fine-dotted factors from the j-th key below vanish in all keys, except for
the j-th one. The j-th key is of the following form:

[K2]2 := [(Uy|W1k1 + v1 · a⊥(b⊥)>k1 | · · · |Wnk1 + vn · a⊥(b⊥)>k1)K]2

= [(Uy|W1k1| · · · |Wnk1)K]2 + [
(
a⊥(b⊥)>k1

)
(0|v1| · · · |vn)K]2 ,

Finally, because of the orthogonality constraints imposed on a⊥ and b⊥, the extra terms (highlighted
in fine-dotted boxes) also do not appear in mpk. We thus have:

AdvHj−1.2
(A) = AdvHj−1.3

(A).

Game Hj−1.4: In this game, the value α used to generate the j-th functional decryption key (see Fig. 5)
is switched to uniformly random over Zp. Using the security of the underlying predicate encoding,
we can argue that the following are identically distributed:(

(v1| · · · |vn)C, (α|v1| · · · |vn)K
)

and
(

(v1| · · · |vn)C, (0|v1| · · · |vn)K
)
.

The leftmost value corresponds to Hj−1.3, whereas the rightmost value corresponds to Hj−1.4. Thus,
we have:

AdvHj−1.3
(A) = AdvHj−1.4

(A).

13

Game Hj−1.5: In this game, the vector v used to generate the j-th functional decryption key (see Fig. 5)
is switched to Ũy instead of Uy. We show that Hj−1.4 and Hj−1.5 are identically distributed. Using
the basis (a,a⊥) of Z2

p, we can write U = au>0 + a⊥u>1 , where u0 = U>a
‖a‖22

, and u1 ←r Z2
p.

Thus, we can write the j-th key as (att,y, [k1]2, [K2]2), with [k1]2 ←r G2
2 \ span([b]2), and:

[K2]2 :=
[
(Ũy + a⊥u>1 y |W1k1| · · · |Wnk1)K + a⊥(b⊥)>k1(α|v1| · · · |vn)K

]
2

=
[
(Ũy|W1k1| · · · |Wnk1)K + a⊥(b⊥)>k1(0|v1| · · · |vn)K + a⊥

(
α · (b⊥)>k1 + u>1 y

∣∣∣0∣∣∣ · · · ∣∣∣0)K]
2
,

where K := EncKey(att).
We conclude using the fact that for all vectors a⊥, b⊥,k1 ∈ Z2

p such that k>1 b
⊥ 6= 0, the following

are identically distributed:
k>1 b

⊥ · α+ u>1 y and k>1 b
⊥ · α,

where α←r Zp. The leftmost distribution corresponds to Hj−1.4, whereas the rightmost distribution
corresponds to Hj−1.5. Thus, we have:

AdvHj−1.4
(A) = AdvHj−1.5

(A).

Game Hj−1.6: In this game, the value α used to generate the j-th functional decryption key (see Fig. 5) is
switched back to 0. This transition is the reverse than the transition from Hj−1.3 to Hj−1.4. Similarly,
we use the security of the underlying predicate encoding to argue that the following are identically
distributed: (

(v1| · · · |vn)C, (α|v1| · · · |vn)K
)

and
(

(v1| · · · |vn)C, (0|v1| · · · |vn)K
)
.

The leftmost value corresponds to Hj−1.6, whereas the rightmost value corresponds to Hj−1.5. Thus,
we have:

AdvHj−1.5
(A) = AdvHj−1.6

(A).

Game Hj−1.7: Switching back from Wi + vi · a⊥(b⊥)> to Wi for all i ∈ [n], we can write the matrix
[C2]1 in the challenge ciphertext as:

[C2]1 = [(W>
1 c1| · · · |W>

n c1)C]1

and the matrix [K2]2 in the j-th key as:

[K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2

Similarly to the transition between Hj−1.2 and Hj−1.3, it holds that:

AdvHj−1.6
(A) = AdvHj−1.7

(A).

Game Hj−1.8: we switch the distribution of the vector [k1]2 contained in the j-th from uniform over
G2

2 \ span([b]2) back to uniform over G2
2. This is the reverse transition than from Hj−1.1 to Hj−1.2.

We have:
|AdvHj−1.7

(A)− AdvHj−1.8
(A)| ≤ 1

p .

Game Hj: we switch the distribution of the vector [k1]2 contained in the j-th key back to [k1]2 := [br]2
for r ←r Zp. This transition is similar to the transition between game Hj−1 and Hj−1.1. Thus, we
obtain a PPT adversary Bj.2 such that:

|AdvHj−1.8
(A)− AdvHj (A)| ≤ AdvDDH

G2,Bj.2(λ).

Summing up for all j ∈ [Q], we obtain the lemma.

14

Hj , Hj.1 , Hj.2, Hj.3, Hj.4, Hj.5 ,Hj.6 , Hj.7 , Hj.8 ,Hj.9 :

(P?,x?)←r A(1λ)
PG ←r PGGen(1λ), a, b←r DDH, U←r Z2×d

p , (n, |ct|, |sk|)←r Param(P), for all i ∈ [n], Wi ←r Z2×2
p

a⊥, b⊥ ←r Z2
p \ {0} s.t.a>a⊥ = b>b⊥ = 0, ∀i ∈ [n] : vi ←r Zp

mpk :=
(
[a]1, [b]2, [U

>a]1, {[W>
i a]1, [Wib]2}i∈[n]

)
u0 := U>a

‖a‖22
∈ Zdp, Ũ := au>0 ∈ Z2×d

p

ct? ←r OEnc(P?,x?)
b←r AOKeyGen(·)(mpk, ct?)

OEnc(P?,x?):
[c1]1 ←r G2

1, C := EncCt(P), [C2]1 := [(W>
1 c1| · · · |W>

n c1)C]1

[C2]1 = [(W>
1 c1| · · · |W>

n c1)C]1 +
[(
b⊥(a⊥)>c1

)
· (v1| · · · |vn)C

]
1

[C2]1 = [(W>
1 c1| · · · |W>

n c1)C]1

[c3]1 := [x? +U>c1]1.
Return (P?, [c1]1, [C2]1, [c3]1)

OKeyGen(att,y):
On the the ρ-th query:
r ←r Zp, [k1]2 := [br]1, K := EncKey(att).
If ρ = j + 1 and P?(att) = 0, then [k1]2 ←r G2

2.

If ρ = j + 1 and P?(att) = 0, then [k1]2 ←r G2
2 \ span([b]2) .

If ρ ≤ j and P?(att) = 0, then: [K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2
If ρ > j or P?(att) = 1, then: [K2]2 := [(Uy|W1k1| · · · |Wnk1)K]2

If ρ = j + 1 and P?(att) = 0, then:

u = Uy, α = 0, α←r Zp , u = Ũy , [K2]2 := [u|W1k1| · · · |Wnk1)K+ (a⊥(b⊥)>k1)(α|v1| . . . |vn)K]2

if ρ = j + 1 and P?(att) = 0, then:[K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2

Return (att,y, [k1]2, [K2]2)

Fig. 5. Hybrid games for the proof of Lemma 3.4, where Hj is defined for all j ∈ [Q], and Hj.i are defined for all
j ∈ [Q− 1], i ∈ {1 . . . 9}. The six type of boxes denote which figure components belong to the hybrid.

ut

Game IdealFEA,S(1λ): we show this game is statistically close to G2. The simulator S := (S̃etup, Ẽnc, K̃eyGen)
is described in Fig. 6. First, we use the fact that for all a ∈ Z2

p, the following distributions are within
1/p statistical distance:

c1 ←r Z2
p and c1 ←r Z2

p \ span(a).

The leftmost distribution corresponds to G2, whereas the rightmost distribution corresponds to IdealFEA,S(1λ).
Then, we use the fact that for all x? ∈ Zd, the following distributions are identical:

(a, c1, Ũ,U) and (a, c1, Ũ,U− a⊥(x?)>),

where a ←r DDH, c1 ←r Z2
p \ span(a), U ←r Z2×d

p , u0 := U>a
‖a‖22

, Ũ := au>0 , and a⊥ ∈ Z2
p such that

a>a⊥ = 0 and c>1 a
⊥ = 1. This is becauseU is a uniformly random matrix, so adding an offset −a⊥(x?)>

15

does not change its distribution. This extra offset doesn’t appear in Ũ since a>a⊥ = 0. The leftmost
distribution corresponds to G2, whereas the rightmost distribution corresponds to IdealFEA,S(1λ).
Putting everything together, we obtain:

|AdvG2(A)− Pr[1←r IdealFEA,S(1λ)]| ≤ 1
p .

ut

S̃etup(1λ,Fipfe(d,B),P):

PG ← GGen(1λ), a, b←r DDH, c1 ←r Z2
p \ span(a), a⊥ ←r Z2

p such that c>1 a⊥ = 1 and a>a⊥ = 0,
U←r Z2×d

p , u0 := U>a
‖a‖22

, Ũ := au>0 , (n, |ct|, |sk|)← Param(P), for all i ∈ [n], Wi ←r Z2×2
p

Return p̃k :=
(
[a]1, [b]2, [U

>a]1, {[W>
i a]1, [Wib]2}i∈[n]

)
, m̃sk :=

(
Ũ,U,a⊥

)

Ẽnc(m̃sk,P?):
C := EncCt(P), [C2]1 := [(W>

1 c1| · · · |W>
n c1)C]1, [c3]1 := [U>c1]1. Return (P?, [c1]1, [C2]1, [c3]1)

K̃eyGen(m̃sk,P?,y, att,P?(att) · y>x?):
r ←r Zp, [k1]2 := [br]2, K := EncKey(att).
If P?(att) = 0, then [K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2.
If P?(att) = 1, then [K2]2 := [(−y>x? · a⊥ +Uy|W1k1| · · · |Wnk1)K]2.
Return (att,y, [k1]2, [K2]2)

Fig. 6. PPT simulator for the security proof of the FE scheme from Fig. 4.

16

3.2 FE with adaptive, indistinguishability based security

In this section, we build FE schemes for the family of functions Fipfe(d,B),P , where P corresponds to identity-
based encryption, inner-product predicate encryption, or even monotone span programs. Similarly to the
selective construction in Section 3.1, we give a modular construction that builds upon a simple, information-
theoretic, one-time secure object, that generalizes the notion of predicate encoding to functions, hence called
function encoding. Namely, a function encoding is a private-key version of functional encryption that only
satisfies a one-time security notion.

Recall that our construction from Section 3.1 fails to achieve adaptive security, even if the underlying
building blocks are adaptively secure. The reason is that, throughout the security proof, only the functional
decryption keys associated with a pair (att,y) such that P?(att) = 0 can be turned to semi-functional, where
P? is the predicate chosen by the adversary for the challenge ciphertext. In fact, the other keys cannot be
turned semi-functional, since they must decrypt correctly the challenge ciphertext, and not just ciphertexts
that can be generated from the public key. This challenge does not arise in the typical dual system encryption
methodology used for ABE, since none of the queried keys can decrypt.

A similar situation arose in the context of fully-hiding predicate encryption for inner products, where
ciphertexts are associated with a vector x̃ ∈ Znp , functional decryption keys are associated with ỹ ∈ Znp , and
decryption successfully recovers the plaintext if x̃>ỹ = 0, whereas no information about that plaintext is
revealed otherwise. As opposed to regular inner-product encryption, the vector x̃ is also hidden, the only
bit of information that leaks is whether x̃>ỹ = 0 or not. In this context, the adversary can query functional
decryption keys that decrypt the challenge ciphertext. This is still a meaningful security notion since x̃
remains hidden even when such keys are queried.

We show that the techniques introduced by [OT12], later improved in [CGW18] for adaptively secure fully-
hiding predicate encryption for inner products are also relevant to obtain adaptively secure inner-product FE
with fine-grained access control (even when the predicate is not hidden). In fact, using function encodings,
a new notion we introduce that subsumes the notion of predicate encoding introduced in [Att14,Wee14]
in the context of adaptively-secure ABE, we generalize the approach of [OT12, CGW18] to a large class
of functional encryption schemes, whereas their scheme corresponds to the special case of inner-product
encryption. Namely, we compile any function encoding for the function family F into an adaptively secure
FE for the same class of functions from the SXDH assumption in asymmetric pairings. In Appendix C,
we give concrete function encodings that correspond to identity-based encryption, inner-product predicate
encryption, fully-hiding inner-product predicate encryption and monotone span programs.

Definition 3.5 (function encoding). Let F be a family of functions where each function f ∈ F is of the
form f : X → Zp, and p be a prime. A function encoding for (F ,Zp) is given by the following polynomial-time
deterministic algorithms:

– Param(F): takes as input the family of functions F , and returns the parameters (n, |ct|, |sk|) ∈ N3.
– EncCt(x): takes as input x ∈ X , and returns a matrix C ∈ Z(n+1)×|ct|

p .
– EncKey(f): takes as input a function f ∈ F , and returns a matrix K ∈ Z(n+1)×|sk|

p .
– Decode(f, part(x)): takes as input the partial information part(x) of x ∈ X and f ∈ F . It returns a vector

d ∈ Z|ct|+|sk|p . (See Section 2.2 for a discussion on the partial information).

We require the following properties.

Correctness. For all x ∈ X and f ∈ F , C := EncCt(x) ∈ Z(n+1)×|ct|
p , K := EncKey(f) ∈ Z(n+1)×|sk|

p ,
d := Decode(f, part(x)), we have: (C|K)d = (f(x), 0, . . . , 0) ∈ Zn+1

p .
Security. For any x0, x1 ∈ X and f ∈ F such that f(x0) = f(x1) and part(x0) = part(x1), the following

are identically distributed:

v>(C|K) with C := EncCt(x0),K := EncKey(f)

and

v>(C|K) with C := EncCt(x1),K := EncKey(f),

where v ←r Zn+1
p .

17

Example: Identity-Based Encryption. Each function is described by an identity id ∈ Zp and a vector
y ∈ [0, B]d, takes as input another identity id′ ∈ Zp and a vector x ∈ [0, B]d, and outputs x>y if id = id′, 0
otherwise. The partial information part(x, id) = id.

– Param: returns the parameters (2d, |ct| = d, |sk| = n+ 1).
– EncCt(x, id): given x ∈ Znp and id ∈ Zp, returns a matrix C ∈ Z(2d+1)×d

p such that C>(w0,w1,w2) =

(w0x + w1 + idw2) ∈ Zdp.
– EncKey(y, id′): given y ∈ Znp and id′ ∈ Zp, returns a matrix K ∈ Z(2d+1)×1

p such that K>(w0,w1,w2) =

y>(w1 + id′w2) ∈ Zp.
– Decode(id, id′,y): if x>y = 0, it returns the vector d := (y,−1) ∈ Zd+1

p .

Our modular construction is presented in Fig. 7. Proofs of correctness and security are given below.

Setup(1λ,Fipfe(d,B),P):

PG = (G1,G2,GT , p, P1, P2, e) ← PGGen(1λ), a ←r DDH, b ←r Z3
p, (n, |ct|, |sk|) ← Param(Fipfe(d,B),P), for all

i ∈ [0, n], Wi ←r Z2×3
p , mpk :=

(
[a]1, {[W>

i a]1}i∈[n]
)
, msk :=

(
[b]2, {[Wib]2}i∈[n]

)
. Return (mpk,msk)

Enc(mpk,P,x):

s ←r Zp, [c1]1 := [as]1 ∈ G2
1, C := EncCt(P,x) ∈ Z(n+1)×|ct|

p , [C2]1 := [(W>
0 c1| . . . |W>

n c1)C]1 ∈ G3×|ct|
1 . Return

(part(P,x), [c1]1, [C2]1).

KeyGen(msk, att,y):

r ←r Zp, [k1]2 := [br]2 ∈ G3
2, K := EncKey(att,y) ∈ Z(n+1)×|sk|

p , [K2]2 := [(W0k1| . . . |Wnk1)K]2 ∈ G2×|sk|
2 ,

[k3]2 := [W0k1]2 ∈ G2
2. Return (att,y, [k1]2, [K2]2, [k3]2).

Dec
(
part(P,x), [c1]1, [C2]1,y, [k1]2, [K2]2, [k3]2):

[d1]T := e([C2]
>
1 , [k1]2) ∈ G|ct|T , [d>2]T := e([c1]

>
1 , [K2]2) ∈ G1×|sk|

T , d := Decode(part(P,x), att), [γ]T :=
[(d1,d2)

>d]T ∈ GT , Return out ∈ [0, dB2] such that [γ]T = [c>1 k3 · out]T . If there isn’t such out, return ⊥.

Fig. 7. An adaptively-secure FE from pairings, for the function family Fipfe(d,B),P .

Correctness. Observe that for all predicates P ∈ P and vectors x ∈ [0, B]d, the vector [(W>
0 c1|W>

1 c1| . . . |
W>

n c1)]1 ∈ G3×n
1 can be computed from mpk and the randomness s←r Zp used by the encryption algorithm

to compute [c1]1 := [as]1. Then, the encryption algorithm multiplies by the matrix C := EncCt(P,x) ∈
Z(n+1)×|ct|
p to obtain [C2]1 ∈ G3×|ct|

1 . Similarly, for all attributes att ∈ U , the vector [(W0k1|W1k1| . . . |
Wnk1)]2 ∈ G2×n

2 can be computed from mpk, msk, and the randomness r ←r Zp used by the key generation
algorithm to compute [k1]2 := [br]2. Then, the key generation algorithm multiplies by the matrix K :=

EncKey(att,y) ∈ Z(n+1)×|sk|
p to obtain [K2]1 ∈ G2×|sk|

2 .
Let P ∈ P and att ∈ U such that P(att) = 1, x,y ∈ [0, B]d, (part(P,x), [c1]1, [C2]1) ←r Enc(mpk,

P,x), and (att,y, [k1]2, [K2]2, [k3]2) ←r KeyGen(msk, att,y). The values computed by the decryption algo-

rithm are such that [d1]T :=

C>
c>1W0k1

...
c>1Wnk1



T

, which implies that [d>1]T = [(c>1 W0k1|c>1 W1k1| . . . |

c>1 Wnk1)C]T ∈ G1×|ct|
T , where C := EncCt(P,x) ∈ Z(n+1)×|ct|

p , and the second equality holds because
c>1Wik1 ∈ Zp, for every i ∈ {0 . . . n}. Also, [d>2]T := [(c>1 W0k1|c>1 W1k1| . . . |c>1 Wnk1)K]T ∈ G1×|sk|

T , where
K := EncKey(att,y) ∈ Z(n+1)×|sk|

p . Thus, by correctness of the function encoding (Param,EncCt,EncKey,Decode),

18

G0, G1, G2 :

β ←r {0, 1}, PG ← PGGen(1λ), a ←r DDH, b ←r Z3
p, (n, |ct|, |sk|) ← Param(Fipfe(d,B),P), for all i ∈ [0, n],

Wi ←r Z2×3
p , mpk :=

(
[a]1, {[W>

i a]1, }i∈[n]
)(

(P0,x0), (P1,x1)
)
← AOKeyGen(·)(1λ,mpk)

ct? ←r OEnc
(
(P0,x0), (P1,x1)

)
β′ ← AOKeyGen(·)(mpk, ct?)
Return 1 if β′ = β, 0 otherwise.

OEnc
(
(P0,x0), (P1,x1)

)
:

s ←r Zp, [c1]1 := [as]1, [c1]1 ←r G2
1 C := EncCt(Pβ ,xβ), C := EncCt(P0,x0) , [C2]1 :=

[(W>
0 c1|W>

1 c1| . . . |W>
n c1)C]T , Return ct? := (part(Pβ ,xβ), [c1]1, [C2]1)

OKeyGen(att,y):
r ←r Zp, [k1]2 := [br]1, K := EncKey(att,y), [K2]2 := [(W0k1|W1k1| · · · |Wk1)K]2, [k3]2 := [W0k1]2. Return
(att,y, [k1]2, [K2]2, [k3]2)

Fig. 8. Hybrid games for the proof of Theorem 3.6.

we have [γ]T := [c>1 W0k1 · x>y]T = [c>1 k3 · x>y] ∈ GT . Therefore, assuming the value B2d is polynomial
in the security parameter, the decryption can efficiently recover out = x>y ∈ [0, B2d].

Theorem 3.6 (AD-IND security). If the underlying function encoding is secure, then the FE scheme
from Fig. 7 is AD-IND secure. Namely, for any PPT adversary A, there exist PPT adversaries B1 and B2

such that:
AdvAD-INDFE,A (λ) ≤ AdvDDH

G1,B1
(λ) + 4QAdvDDH

G2,B2
(λ),

where Q denotes the number of queries to OKeyGen.

Proof. The proof uses a series of hybrid games, described in Fig. 8. For each game G, we define by AdvG(A)
the advantage of A in G, that is: 2 · |Pr[1←r G(A)]− 1/2|.

Game G0: is defined such that AdvG0
(A) = AdvAD-INDFE,A (λ).

Game G1: here we change the distribution of the vector [c1]1 that is part of the challenge ciphertext to
uniformly random over G2

1, using the DDH assumption in G1. Namely, we build a PPT adversary B1

such that:
|AdvG0(A)− AdvG1(A)| ≤ AdvDDH

G1,B1
(λ).

Upon receiving a challenge (PG, [a]1, [z]1), where [z]1 := [as]1 for s←r Zp, or [z]1 ←r G2
1, the adversary

B1 samples (n, |ct|, |sk|)← Param(Fipfe(d,B),P), for all i ∈ [0, n], Wi ←r Z2×3
p , and simulate A’s view in

a straightforward way, setting [c1]1 := [z]1 in the challenge ciphertext.
Game G2: here we change the distribution of the challenge ciphertext so that it doesn’t depend on the

random bit β ←r {0, 1} anymore. Clearly,

AdvG2
(A) = 0.

We show that G1 and G2 are computationally indistinguishable using the security of a private-key variant
of our scheme. Namely, we exhibit a PPT adversary B2 such that:

|AdvG1(A)−AdvG2(A)| ≤ AdvH0(B2),

where AdvH0
(B2) denotes the advantage of B2 in game H0, which is the private-key analogue of game

G0 (see Fig. 10). We use the fact that for any i ∈ [0, n]: (W>
i a,W

>
i c1) with Wi ←r Z2×3

p , a←r DDH,

19

c1 ←r Z3
p, is within negligible statistical distance from (W>

i a,wi) with wi ←r Z3
p. Roughly speaking,

the vectors wi can be used as a fresh private-key, independent of the public key {[W>
i a]1}. Note that

when a ←r DDH and a⊥ ←r Z2
p \ {0} such that a>a⊥ = 0, we have that the vectors (a|a⊥) form a

basis of Z2
p. Thus we can write W>

i := w̃ia
> + wi(a

⊥)>, where w̃i,wi ←r Z3
p, and a⊥ ∈ Z2

p is such
that a>a⊥ = 0 and c>1 a

⊥ = 1. This way, the public key can be written as:

mpk :=
(
[a]1, {[w̃ia

>a]1}i∈[n]

)
,

the challenge ciphertext can be written as:

(part(Pβ ,xβ), [c1]1, [C2]1), with [c1]1 ←r G2
1,

C := EncCt(Pβ ,xβ),

[C2]1 := [(w>0 |w>1 | . . . |w>n)C]1,

which corresponds exactly to game H0. The functional decryption keys can be written as:

r ←r Zp, [k1]2 := [br]1,K := EncKey(att,y),

[K2]2 := [(aw̃0
>

+ a⊥w>0)k1| · · · |(aw̃n
>

+ a⊥w>n)k1)K]2,

[k3]2 := [(aw̃0
>

+ a⊥w>0)k1]2.

The adversary B2 samples w̃i ←r Z3
p for all i ∈ [0, n] and a ←r DDH, a⊥ ←r Z2

p such that a>a⊥ = 0,
thanks to which it can simulate the public key to A. To generate the challenge ciphertext, B2 forwards the
query

(
(P0,x0), (P1,x1)

)
to its own encryption oracle, and forwards its challenge ciphertext to A. When

A queries OKeyGen(att,y), B2 queries its own oracle to get skatt,y := (att,y, [k1]2, [k2]2, [k3]2), where
[k>2]2 := [(w>0 k1| . . . |w>nk1)K]2 for K := EncKey(att,y), and [k3]2 := [w>0 k1]2. B2 computes [K′2]2 :=

[a⊥k>2]2 + [a(w̃0
>| . . . |w̃n

>
)K]2, and [k′3]2 := [a⊥k3]2 + [aw̃0

>
k1]2, and returns ([k1]2, [K

′
2]2, [k

′
3]2) to

A.
In Lemma 3.7, we show that AdvH0(B2) is negligible.

Lemma 3.7. For any PPT adversary A, there exists a PPT adversary B such that:

AdvH0
(A) ≤ 4Q · AdvDDH

G2,B(λ),

where Q denotes the number of queries to OKeyGen.

Proof. The proof uses a series of hybrid games, described in Figs. 9 and 10. For any game H, we denote
by AdvH(A) the advantage of A in H, that is, the probability Pr[1 ←r H(A)] that the game H returns
1 when interacting with A, where the probability is taken over the random coins of A and the game H
itself.
Game H0: is described in Fig. 10. We use the basis (b∗|b∗2|b∗3) of Z3

p to write wi ←r Z3
p as wi :=

w1
i b
∗+w2

i b
∗
1 +w3

i b
∗
3, with w1

i , w
2
i , w

3
i ←r Zp, for all i ∈ [0, n]. This basis is dual to the random basis

(b|b2|b3), that is: b>2 b∗ = b>3 b
∗ = 0, b>b∗ = 1, b>b∗2 = b>3 b

∗
2 = 0, b>2 b∗2 = 1, b>b∗3 = b>2 b

∗
3 = 0,

b>3 b
∗
3 = 1.

Game H1: we change the component of the ciphertext along the vector b∗3, using the one-time security
of the function encoding. Namely, we use the fact that (w3

0| . . . |w3
n)Cβ is identically distributed

to (w3
0| . . . |w3

n)C0, where w3
0, . . . , w

3
n ←r Zp, Cβ := EncCt(Pβ ,xβ), and C0 := EncCt(P0,x0), by

security of the function encoding (see Definition 3.5). Note that we rely on the fact that the values
(w3

0| . . . |w3
n) do not appear in the functional decryption keys, since all of these keys contain vectors

[k1]2 such that k>1 b∗3 = 0.
Game H1.q: is defined in Fig. 9 for all q ∈ [Q] where Q denotes the number of queries to OKeyGen. Note

that H1.0 is the same as game H1. To show that H1.q−1 is computationally indistinguishable from
H1.q for all q ∈ [Q], we use intermediate hybrid games H1.q−1.1,H1.q−1.2, and H1.q−1.3, also defined in
Fig. 9.

20

Game H1.q−1.1: in this game, we switch the distribution of the output to the q-th query to OKeyGen.
Namely, the vector [k1]2 is sampled uniformly in span([b2]2) instead of span([b]2). This is done us-
ing the DDH assumption in G2. The reduction from DDH must not know the vectors b∗ and b∗2,
which are trapdoors for the DDH assumption (they permit to test membership in span([b]2) or
span([b2]2) respectively). Indeed, it is possible to sample the vectors w1

i b
∗+w2

i b
∗
2 with w1

i , w
2
i ←r Zp

for all i ∈ [0, n], without knowing explicitly the vectors b∗ and b∗2. We consider an intermediate
game H′1.q−1.1 which is like H1.q−1.1 except that the vector [k1]2 from the q-th key is sampled uni-
formly over span([b]2, [b2]2). We build PPT adversaries B′1.q−1 and B′1.q−1.1 such that: |AdvH1.q−1

(A)−
AdvH′1.q−1.1

(A)| ≤ AdvAs−1
PG,B′1.q−1

(λ), and |AdvH′1.q−1.1
(A) − AdvH1.q−1.1

(A)| ≤ AdvAs−2
PG,B′1.q−1.1

(λ). By
Lemma 3.8, this implies the existence of a PPT adversary B1.q−1 such that

|AdvH1.q−1
(A)− AdvH1.q−1.1

(A)| ≤ 2 · AdvDDH
G2,B1.q−1

(λ).

Upon receiving (u1,u2, b
∗
3, [b]2, [b3]2, [z]2), B′1.q−1 computes the challenge ciphertext as cβ2 + c0

2 with
cβ>2 := (u>1 w

1
0 +u>2 w

2
0| . . . |u>1 w1

n+u>2 w
2
n)Cβ and c0>

2 := (b∗>3 w3
0| . . . |b∗>3 w3

n)C0 with w1
i , w

2
i , w

3
i ←r

Zp for all i ∈ [0, n], Cβ := EncCt(Pβ ,xβ) and C0 := EncCt(P0,x0). It computes the keys as follows.
For the q − 1 first keys, it samples [k1]2 ←r span([b3]2); for the q-th key, it uses [k1]2 := [z]2, and
for the last Q − q − 1 keys it computes [k1]2 ←r span([b]2). The rest of the keys are computed as
[k>2]2 := [(w>0 k1|w>1 k1| · · · |w>nk1)K]T , [k3]2 := [w>0 k1]2, with wi := u1w

1
i + u2w

2
i + b∗3w

3
i for all

i ∈ [0, n]. The adversary B′1.q−1.1 works similarly.
Game H1.q−1.2: Here we switch the distribution of the challenge ciphertext, using the fact that the

following distributions are identical:

(w2
0| . . . |w2

0)>Cβ , (w2
0| . . . |w2

0)>K and (w2
0| . . . |w2

0)>C0, (w2
0| . . . |w2

0)>K,

where w2
0, . . . , w

2
n ←r Zp, Cβ := EncCt(Pβ ,xβ), C0 := EncCt(P0,x0), and K := EncKey(att,y). This

holds by security of the function encoding (see Definition 3.5), since by definition of the security
game, we have P0(att) · y>x0 = P1(att) · y>x1 for all queries (att,y) to OKeyGen. The leftmost
distribution corresponds to game H1.q−1.1, whereas the rightmost distribution corresponds to the
game H1.q−1.2. Thus, we have:

AdvH1.q−1.1
(A) = AdvH1.q−1.2

(A).

Game H1.q−1.3: in this game, we switch the distribution of the output to the q-th query to OKeyGen.
Namely, the vector [k1]2 is sampled uniformly in span([b3]2) instead of span([b2]2). This is done
using the DDH assumption in G2. As for the transition between games H1.q−1.1 and H1.q−1.2, we
consider an intermediate game H′1.q−1.2 which is like H1.q−1.2 except the vector [k1]2 from the q-th
key is sampled uniformly over span([b2]2, [b3]2). We build PPT adversaries B′1.q−1.2 and B′1.q−1.3 such
that: |AdvH1.q−1.2

(A) − AdvH′1.q−1.2
(A)| ≤ AdvAs−3

PG,B′1.q−1.2
(λ), and |AdvH′1.q−1.2

(A) − AdvH1.q−1.3
(A)| ≤

AdvAs−4
PG,B′1.q−1.3

(λ). By Lemma 3.8, this implies the existence of a PPT adversary B1.q−1.2 such that

|AdvH1.q−1.2(A)− AdvH1.q−1.3(A)| ≤ 2 · AdvDDH
G2,B1.q−1.2

(λ).

Upon receiving (u1,u2, b
∗, [b]2, [b3]2, [z]2), B′1.q−1 computes the challenge ciphertext as cβ2 + c0

2 with
cβ>2 := (b∗>w1

0| . . . |b∗>w1
n)Cβ and c0>

2 := (u>1 w
2
0 +u>2 w

3
0| . . . |u>1 w2

n+u>2 w
3
n)C0 with w1

i , w
2
i , w

3
i ←r

Zp for all i ∈ [0, n]. It computes the keys as follows. For the q − 1 first keys, it samples [k1]2 ←r
span([b3]2); for the q-th key, it uses [k1]2 := [z]2, and for the last Q − q − 1 keys it computes
[k1]2 ←r span([b]2). The rest of the keys are computed as [k>2]2 := [(w>0 k1|w>1 k1| · · · |w>nk1)K]T ,
[k3]2 := [w>0 k1]2, with wi := b∗w1

i + u1w
2
i + u2w

3
i for all i ∈ [0, n]. The adversary B′1.q−1.3 works

similarly.

21

Game H1.q: the transition between games H1.q−1.3 and H1.q is similar to the transition between games
H0 and H1. Namely,we switch the distribution of the challenge ciphertext, using the fact that the
following distributions are identical:

(w2
0| . . . |w2

0)>Cβ and (w2
0| . . . |w2

0)>C0,

where w2
0, . . . , w

2
n ←r Zp, Cβ := EncCt(Pβ ,xβ), and C0 := EncCt(P0,x0). The leftmost distribution

corresponds to game H1.q, whereas the rightmost distribution corresponds to the game H1.q−1.3.
Thus, we have:

AdvH1.q−1.3(A) = AdvH1.q (A).

Game H2: the transition between games H1.Q and H2 is also similar to the transition between games
H0 and H1. Namely, we switch the distribution of the challenge ciphertext, using the fact that the
following distributions are identical:

(w1
0| . . . |w1

0)>Cβ and (w1
0| . . . |w1

0)>C0,

where w1
0, . . . , w

1
n ←r Zp, Cβ := EncCt(Pβ ,xβ), and C0 := EncCt(P0,x0). The leftmost distribution

corresponds to game H1.Q, whereas the rightmost distribution corresponds to the game H2. Thus,
we have:

AdvH1.Q
(A) = AdvH2(A).

ut

Assumptions. All assumptions are relative to a pairing group PG = (G1,G2,GT , p, P1, P2, e) ←
PGGen(1λ) and two random dual basis (b|b2|b3) and (b∗|b∗2|b∗3), that is, the vectors are sampled randomly
subject to: b>2 b∗ = b>3 b

∗ = 0, b>b∗ = 1, b>b∗2 = b>3 b
∗
2 = 0, b>2 b∗2 = 1, b>b∗3 = b>2 b

∗
3 = 0, b>3 b∗3 = 1. For

any assumption i and PPT adversary A, we define the advantage AdvAs−i
PG,A(λ) accordingly.

Assumption 1:
(
u1,u2 ←r span(b∗, b∗2), b∗3, [b]2, [b3]2, [z]2 ←r span([b]2)

)
≈c(

u1,u2 ←r span(b∗, b∗2), b∗3, [b]2, [b3]2, [z]2 ←r span([b]2, [b2]2)
)
.

Assumption 2:
(
u1,u2 ←r span(b∗, b∗2), b∗3, [b]2, [b3]2, [z]2 ←r span([b2]2)

)
≈c(

u1,u2 ←r span(b∗, b∗2), b∗3, [b]2, [b3]2, [z]2 ←r span([b]2, [b2]2)
)
.

Assumption 3:
(
b∗,u1,u2 ←r span(b∗2, b

∗
3), [b]2, [b3]2, [z]2 ←r span([b2]2)

)
≈c(

u1,u2 ←r span(b∗, b∗2), b∗3, [b]2, [b3]2, [z]2 ←r span([b2]2, [b3]2)
)
.

Assumption 4:
(
b∗,u1,u2 ←r span(b∗2, b

∗
3), [b]2, [b3]2, [z]2 ←r span([b3]2)

)
≈c(

u1,u2 ←r span(b∗, b∗2), b∗3, [b]2, [b3]2, [z]2 ←r span([b2]2, [b3]2)
)
.

Lemma 3.8 (Reduction from DDH to the assumptions [OT09, Lew12]). For all the above
assumptions, there is a reduction from DDH in G2.

Proof. Let A be a PPT adversary. For each assumption i, we build a PPT adversary Bi that has a greater
advantage in breaking DDH in G2 that the advantage of A in breaking Assumption i. Upon receiving
(PG, [a]2, [t]2), where PG ←r PGGen(1λ), a ←r DDH, [t]2 := [as]2 with s ←r Zp, or [t]2 ←r G2

2,
adversary Bi does the following:

Assumption 1: B1 samples u1,u2, b
∗
3 ←r Z3

p, compute [ã]2 such that
(
a
ã

)>
b∗3 = 0. Writing b∗3 :=

αβ
γ


and assuming γ 6= 0, this can be done efficiently by setting [ã]2 :=

−[a]>2 (αβ)
γ . Similarly, compute

22

H1.q, H1.q.1,H1.q.2, H1.q.3, H2:
β ←r {0, 1}, PG ← PGGen(1λ), (n, |ct|, |sk|) ← Param(F), let (b|b2|b3) and (b∗|b∗2|b∗3) be two random dual basis of
Z3
p. For all i ∈ [0, n], j ∈ [3], wi ←r Z3

p. We write wi := w1
i b
∗ + w2

i b
∗
1 + w3

i b
∗
3(

(P0,x0), (P1,x1)
)
← A(1λ)

ct? ←r OEnc
(
(P0,x0), (P1,x1)

)
β′ ← AOKeyGen(·)(ct?)
Return 1 if β′ = β, 0 otherwise.

OEnc
(
(P0,x0), (P1,x1)

)
: H1.q, H1.q.1, H1.q.2, H1.q.3 , H2

Cβ := EncCt(Pβ ,xβ), C0 := EncCt(P0,x0)
cβ>2 := (b∗>w1

0 + b∗>2 w2
0| . . . |b∗>w1

n + b∗>2 w2
n)C

β

cβ>2 := (b∗>w1
0| . . . |b∗>w1

n)C
β

cβ>2 := 0>

c0>2 := (b∗>3 w3
0| . . . |b∗>3 w3

n)C
0

c0>2 := (b∗>2 w2
0 + b∗>3 w3

0| . . . |b∗>2 w2
n + b∗>3 w3

n)C
0

c0>2 := (w>0 | . . . |w>n)C0

c2 := cβ2 + c02
Return ct? := (part(Pβ ,xβ), c2)

OKeyGen(att,y): H1.q, H1.q.1,H1.q.2 , H1.q.3 , H2

On the ρ-th query if ρ ≤ q, then k1 ←r span(b3). If ρ > q, then k1 ←r span(b).
If ρ = q + 1, then k1 ←r span(b2). If ρ = q + 1, then k1 ←r span(b3).

For all ρ, k1 ←r span(b3)

K := EncKey(att,y), [k>2]2 := [(w>0 k1|w>1 k1| · · · |w>nk1)K]T , [k3]2 := [w>0 k1]2.
Return (att,y, [k1]2, [k

>
2]2, [k3]2)

Fig. 9. Hybrid games for the proof of Lemma 3.7, where q ∈ [Q], and Q denotes the number of queries to OKeyGen.

[t̃]2 :=
−[t]>2 (αβ)

γ . Set [b]2 :=

[
a
ã

]
2

, [z]2 :=

[
z
z̃

]
2

sample b3 ←r Z3
p such that b>3 b

∗
3 = 0 and return(

u1,u2, b
∗
3, [b]2, [b3]2, [z]2

)
to A.

Assumption 2: B2 samples u1,u2, b
∗
3 ←r Z3

p, compute [z̃]2 as B1. Set [z]2 :=

[
z
z̃

]
2

, sample b, b3 ←r Z3
p

such that b>b∗3 = b>3 b
∗
3 = 0, and return

(
u1,u2, b

∗
3, [b]2, [b3]2, [z]2

)
to A.

Assumption 3: B3 samples b∗,u1,u2 ←r Z3
p, compute [z̃]2 such that

(
z
z̃

)>
b∗ = 0, which can be done

efficiently, as B1 (replacing b∗3 with b∗). Set [z]2 :=

[
z
z̃

]
2

, sample b, b3 ←r Z3
p such that b>3 b

∗
3 = 0

and b>b∗ = 1, and return
(
b∗,u1,u2, [b]2, [b3]2, [z]2

)
to A.

Assumption 4: B4 samples b∗,u1,u2 ←r Z3
p, compute [ã]2 and [z̃]2 such that

(
a
ã

)>
b∗ = 0 and

(
z
z̃

)>
b∗ =

0, respectively. Set [b3]2 :=

[
a
ã

]
2

, [z]2 :=

[
z
z̃

]
2

, sample b ←r Z3
p such that b>b∗ = 1, and return(

b∗,u1,u2, [b]2, [b3]2, [z]2

)
to A.

ut

23

ut

H0, H1 :

β ←r {0, 1}, PG ← PGGen(1λ), (n, |ct|, |sk|)← Param(Fipfe(d,B),P), let (b|b2|b3) and (b∗|b∗2|b∗3) be two random dual
basis of Z3

p. For all i ∈ [0, n], wi ←r Z3
p. We write wi := w1

i b
∗ + w2

i b
∗
1 + w3

i b
∗
3, with w1

i , w
2
i , w

3
i ←r Zp(

(P0,x0), (P1,x1)
)
← A(1λ)

ct? ←r OEnc
(
(P0,x0), (P1,x1)

)
β′ ← AOKeyGen(·)(ct?)
Return 1 if β′ = β, 0 otherwise.

OEnc
(
(P0,x0), (P1,x1)

)
:

Cβ := EncCt(Pβ ,xβ), C0 := EncCt(P0,x0),

cβ>2 := (w>0 | . . . |w>n)Cβ , cβ>2 := (b∗>w1
0 + b∗>2 w2

0| . . . |b∗>w1
n + b∗>2 w2

n)C
β ,

c0>2 := 0>, c0>2 := (b∗>3 w3
0| . . . |b∗>3 w3

n)C
0 ,

c2 := cβ2 + c02.
Return ct? := (part(Pβ ,xβ), c2)

OKeyGen(att,y):
k1 ←r span(b), K := EncKey(att,y), [k>2]2 := [(w>0 k1|w>1 k1| · · · |w>nk1)K]2, [k3]2 := [w>0 k1]2. Return
(att,y, [k1]2, [k2]2, [k3]2)

Fig. 10. Hybrid games for the proofs of Theorem 3.6 and Lemma 3.7.

4 A Lattice-Based Identity-Based Functional Encryption in the
Random-Oracle Model

In this section, we build an identity-based functional encryption (IFE) for the inner-product functionality
from LWE in the random-oracle model. In Section 5, we provide a lattice-based scheme that is proven secure
in the standard model.

4.1 Lattice Preliminaries

Matrix norms For a vector u, ‖u‖ denotes its `2 norm. For a matrix R, by R̃ we denote the result of
applying Gram Schmidt orthogonalization on the columns of R. In addition:

– ‖R‖ denotes the `2 norm of the longest column of R.
– ‖R‖2 denotes the operator norm of R, where ‖R‖2 = sup‖x‖=1‖Rx‖, with x ∈ Zm
– s1(R) denotes the spectral norm (the largest singular value of R).

Known facts are that ‖R̃‖ ≤ ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖. We will also need the fact that concatenating two

matrices R,S yields s1(R|S) ≤
√
s1(R)2 + s1(S2). For bounding the spectral norm, we will require the

following lemma:

Lemma 4.1. [DM14] Let X ∈ Rn×m be a subgaussian random matrix with parameter s. There exists a
universal constant C ≈ 1√

2π
such that for any t ≥ 0, we have s1(X) ≤ C · s · (

√
m +

√
n + t) except with

probability at most 2
eπt2

.

24

Lattices. For any matrix A ∈ Zn×mq and any vector p ∈ Znq , we define the orthogonal q-ary lattice of A:
Λ⊥q (A) := {u ∈ Zm : Au = 0 mod q} and the shifted lattice: Λp

q (A) := {u ∈ Zm : Au = p mod q}.
Similarly, for any matrix P ∈ Zn×`q , we define: ΛP

q (A) := {U ∈ Zm×` : AU = P mod q}.

Probability distributions Consider a lattice Λ ⊆ Zm. The normal Gaussian distribution of mean 0 and
variance σ2 is the distribution on R with probability density function 1

σ·
√

2π
1

ex2/(2σ2)
. The lattice gaussian

distribution with support Λ ⊆ Rn, standard deviation σ and centered at c is defined as:

for all y ∈ Λ : DΛ,σ,c(y) = e−π‖y−c‖2/σ2∑
x∈Λ e

−π‖x−c‖2/σ2

Lemma 4.2 (Bounding Gaussian Noise). [MR04] For any n-dimensional lattice Λ, c ∈ span(Λ), real
ε ∈ (0, 1), and s ≥ ηε(Λ),

Pr
x←rDΛ,s,c

[‖x− c‖ > s
√
n] ≤ 1+ε

1−ε
1

2n .

Also from [MR04, Lemma 3.2], for any n-dimensional lattice Λ, ηε(Λ) ≤
√
n/λ1(Λ∗), where ε = 1

2n . This
was improved by [GPV08] to obtain that for any ω(

√
log n) function, there is a negligible ε(n) such that:

ηε(Z) ≤ ω(
√

log n). In particular, when sampling integers, we have that for any ε ∈ (0, 1
2) any s ≥ ηε(Z),

and any t ≥ ω(
√

log n):
Pr

x←rDZ,s,c
[|x− c| > s · t] ≤ negl(n).

Learning with errors (LWE) [Reg05] Let q be a prime, χ be a public distribution over Zq and s be
uniformly random over Znq . Moreover, s is constant across calls to oracles Os or O$, defined below:

– Oracle Os outputs samples (a,a>s + x), where a ←r Znq and x ←r χ are fresh and independently
sampled.

– Oracle O$ outputs uniformly random elements of Znq × Zq.

Define another oracle O, which across all calls, is either Os or O$. The learning with errors LWEq,χ,n problem
is to distinguish with non-negligible probability, given access to oracle O, whether it corresponds to Os or
O$.

Proposition 4.3 ([Reg05]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that α · q > 2
√
n.

If there exists an efficient (possibly quantum) algorithm that solves LWEq,ψ̄α , then there exists an efficient
quantum algorithm for approximating SIVP and GapSVP in the `2 norm, in the worst case, to within Õ(n/α)
factors.

In [Pei07], this result has been generalized for any `p norm, with 2 ≤ p ≤ ∞ and for similar Õ(n/α)
approximation factors.

Theorem 4.4. [GPV08, Theorem 4.1] There is a probabilistic polynomial-time algorithm SampleD that,
given a basis B of an n-dimensional lattice ∆ = L(B), a parameter s ≥ ‖B̃‖ ·ω(

√
log n), and a center c ∈ R,

outputs a sample from a distribution that is statistically close to DΛ,s,c.

Proposition 4.5. [Ajt99] For any prime q = poly(n) and anym ≥ 5n lg q, there is a probabilistic polynomial-
time algorithm SampleMat that, on input 1n, outputs a matrix A ∈ Zn×mq and a full-rank set S ⊂ Λ⊥q (A),
where the distribution of A is statistically close to uniform over Zn×mq and the length ‖S‖ ≤ L = m2.5.

Also, by [MG02, Lemma 7.1, page 129], S can be converted efficiently to a “good” basis T of Λ⊥q (A) such
that ‖T̃‖ ≤ ‖S̃‖ ≤ L.

Lemma 4.6 ([GPV08]Preimage Samplable Functions). For any prime q = poly(n), any m ≥ 5n lg q,
and any s ≥ L ·ω(

√
logm), it holds that there exist PPT algorithms TrapGen,SampleD,SamplePre such that:

25

1. TrapGen computes (A,T) ←r TrapGen(1n, 1m), where A ∈ Zm×nq is statistically close to uniform and
T ⊂ Λ⊥q (A) is a good basis with ‖T̃‖ ≤ L. The matrix A (and q) are public, while the good basis T is
the trapdoor.

2. SampleD samples vectors e from DZ`×m,s.
3. The trapdoor inversion algorithm SamplePre(A,T, s,U) outputs a matrix Z ∈ Z`×m such that U = ZA.

In addition, it holds that the following distributions D1, D2 are statistically close:

D1 := (A,Z,U), s.t. (A,T)←r TrapGen(1n, 1m),U←r Z`×n,
Z←r SamplePre(A,T, s,U)

D2 := (A,Z,ZA), where A←r Zm×nq ,Z←r DZ`×m,s : ‖zi‖ ≤ s
√
m, i ∈ {1 . . .m}

where zi denotes the i-th row of Z.

Noise Rerandomization. The following procedure NoiseGen(R, s) for noise rerandomization, was described
in [KY16]. NoiseGen(R, s): given a matrix R ∈ Zm×t, and s ∈ R+ such that s2 > s1(RR>), it first samples

e1 := Re+(s2Im−RR>)
1
2 e′, where Im ∈ Zm×m denotes the identity matrix, and e←r Dtσ and e′ ←r Dm√2σ

are independent spherical continuous Gaussian noises. Then, it samples e2 ←r DZm−e1,s
√

2σ, and returns
e1 + e2 ∈ Zmq . We have the following lemma:

Lemma 4.7 (Noise Distribution [KY16]). Let R←r Zm×t and s > s1(R). The following distributions
are statistically close:
Distribution 1: e←r DZt,σ and e′ ←r NoiseGen(R, s). Output Re + e′.
Distribution 2: Output e←r DZm,2sσ.

4.2 Our Construction

In this section, we describe how to obtain an identity-based inner-product funtional encryption scheme
based on the hardness of LWE in the random-oracle model. Our idea is to start with a modification of the
ALS functional encryption scheme for inner-products [ALS16], proposed by [WFL19] and which we recall
in Appendix A. We modify the identity-based encryption scheme of [GPV08] in such a way as to support
functional key generation queries, as in ALS. Our construction is described in Fig. 11. Ciphertexts encode
vectors x ∈ X := {0, . . . , P − 1}` under an identity id. Secret keys correspond to an identity id and a vector
y ∈ Y := {0, . . . , V − 1}`. When the identities match, our scheme decrypts the bounded inner-product
〈x,y〉 ∈ {0, . . . ,K − 1} where K = `PV .

Since our construction achieves anonymity and the size of input vectors x are fixed, no partial information
about the input is leaked. That is, part(x, id) =⊥.

Lemma 4.8 (Correctness). For q ≥ 2K`
√
`V ω(log2 n), σ = 2Cαq(

√
m +

√
n +
√
`), ρ ≥ ω(

√
log n),

m = 2n log q, the scheme from Fig. 11 is correct.

Proof. When identities match, observe that decryption yields y>Us+y>f2 +y>ZAs+y>Zf1 +
⌊
q
K

⌋
〈x,y〉,

which is equal to:

y>f2 + y>Zf1︸ ︷︷ ︸
error terms

+
⌊
q
K

⌋
〈x,y〉

This decrypts correctly as long as the error terms are small. From Lemma 4.2, we know that every entry of Z
is with overwhelming probability bounded by ω(log n), so ‖Z‖ ≤

√
` ·ω(log n), as long as ρ ≥ ω(

√
log n). We

use Lemma 4.2 once again and we bound ‖y>Ze1‖ ≤ `
√
`V ω(log2 n) and ‖ye2‖ ≤ `V ω(

√
log n), as long as

σ ≥ ω(
√

log n). For decryption to succeed, we want that the error terms are smaller than q
2K , which implies:

q ≥ 2K`
√
`V ω(log2 n), which is the case for our choice of parameters.

ut

26

Setup(1λ,X ,Y):
(A,T)←r TrapGen(1n, 1m)
mpk← A,msk← T

Enc(mpk, id,x):
Uid ← H(id)
s←r Znq
f1 ←r DZm,σ
f2 ←r DZ`,σ
ct1 ← As+ f1

ct2 = Uids+ f2 +
⌊
q
K

⌋
· x

Return (ct1, ct2)

KeyGen(id,y):
Uid ← H(id)
Zid ←r SamplePre(A,T, ρ,Uid)
Return (y, skid,y := (y> · Zid))

Dec
(
ct1, ct2, skid,y,y):

µ = y> · ct2 − skid,y · ct1
µ′ = argminµ′∈{0...K+1}

∣∣∣⌊ qK ⌋ · µ− µ′∣∣∣
Return µ′

Fig. 11. An identity-based inner-product functional encryption scheme IFE in the random-oracle model, where H
denotes the random oracle. Algorithms TrapGen and SamplePre are referenced in Lemma 4.6

Remark 4.9 (No smudging noise). We remark that in our setup, we rely on efficient lattice parameters and
require no smudging or superpolynomial modulus.

Theorem 4.10 (Security). Let n be the security parameter, q ≥ 2K`
√
`V ω(log2 n), σ = 2Cαq(

√
m+
√
n+√

`), ρ ≥ ω(
√

log n), m = 2n log q, α ≤ σ
2Cαq(

√
m+
√
n+
√
`)
, then the scheme from Fig. 11 is AD-IND-secure

in the random-oracle model, assuming that LWEq,α,n is hard.

Proof. We prove adaptive security in the random-oracle model, following the proof structure and techniques
of [GPV08], while making several changes to adapt the proof techniques to functional encryption. First,
without loss of generality, we assume that any adversary making key generation queries of the form id‖y will
first query the random oracle on id (we can make this assumption because for every adversary A, we can
compile it into an adversary A′ that exhibits this behavior). We proceed in a series of hybrids, consider A
to be a PPT adversary, and n ∈ N to be the security parameter. We denote by AdvGamei(A) the advantage
of A in game i.

Game 0 This is the original AD-IND game.

Game 1 In this game, we guess what identities id∗0 and id∗1 will be used for the challenge messages. Guessing
id∗0, id

∗
1 themselves would incur an exponential security loss. Therefore, instead of guesssing the identities

themselves, we guess the index of the random-oracle query in which the adversary queries the oracle H to
get Uid∗0

and Uid∗1
. This will result in an 1

Q2 security loss, where Q is the total number of queries to the
random oracle. As explained above, we are guaranteed that the adversary will make this query.

Depending on whether id∗0 = id∗1, we will either perform a reduction to the ALS scheme (see Appendix A)
or directly to LWE.

Case 1, id∗0 = id∗1 We perform a reduction to the security of the ALS [ALS16] encryption scheme, which we
recall in Appendix A. We reduce to the AD-IND security of ALS. We first obtain from the challenger public
keys AALS,DALS. Now, equipped with the knowledge of id∗, we define Game1 to be the same as Game0,
except for the following changes:

– Matrix A is not generated with TrapGen anymore, instead A is now replaced with AALS.
– For every id 6= id∗ query to the random oracle H, we draw a matrix Zid ←r DZ`×m,ρ. We program the random

oracle H(id) = Uid, where Uid is now computed as Uid = ZidA.
Key queries of the form id‖y are answered by returning y>Zid.

27

– For id = id∗, we program H(id) = DALS.
– For key queries of the form id∗‖y, we notice that we cannot answer them ourselves. However, we are allowed

to forward y to the challenger of the AD-IND security of ALS, which replies with y>ZALS, where ZALS is
the master secret key of the ALS scheme. We set skid∗‖y := y>ZALS and forward it to the adversary.

– When the adversary finally submits its challenge (x0,x1), we forward this to the ALS challenger, which
replies with ct := (ct1, ct2). We forward ct back to the adversary.

We therefore have that AdvGame1(A) ≤ AdvALS(A), now we only need to show that |AdvGame0(A) −
AdvGame1(A)| ≤ negl(n). For this we use Lemma 4.6, which tells us that:

For any id 6= id∗ , D0 := (A,Zid,Uid), where (A,T) ←r TrapGen(1n),Uid ←r Z`×n, Zid ←r SamplePre(A,
T, s,Uid), (which is the same as the adversarial view in Game0) is statistically close to D1 := (A,Zid,ZidA),
where A ←r Zm×nq ,Zid ←r DZ`×m : ‖zi‖ ≤ s

√
m (recall that zi denotes the i-th row of Z). Note that in

ALS, matrix AALS is indeed uniformly random, which corresponds to how A is chosen in Game1.

Finally, when id = id∗, we need to argue that ALS public keys are distributed statistically close to honestly
generated keys in Game0. Note that in ALS, the second matrix DALS is not uniformly random like in Game0,
but instead is of the form DALS = ZALSAALS (in fact in can be proven that U is not statistically close to
uniformly random). However, this is not an issue in our case, as the distribution of Uid∗ is in fact uniform
conditioned on it being of the form Zid∗A. Therefore, we can apply Lemma 4.6 once again, and conclude
that (A,Zid∗ ,Uid∗) with trapdoored A and uniform Uid∗ is statistically close to (A,Zid∗ ,Zid∗A).

Case 2, id∗0 6= id∗1 In this case, we make the following observation: if the adversary was allowed to obtain
secret keys for either id∗0‖y or id∗1‖y, for any y, then it could trivially distinguish between encryptions of x0

under id∗0 and encryptions of x1 under id∗1. This type of trivial attack is excluded by the AD-IND definition,
therefore we conclude that the adversary cannot obtain decryption key queries for neither id∗0 or id∗1. With

this limitation, we can perform a reduction directly to LWE for matrix B =

 A
Uid∗0
Uid∗1

 ∈ Z(m+2`)×n
q , where

B is uniformly random. We obtain a ciphertext c = (c1, c2, c3) from the LWE oracle. To simulate the view
of A, we set H(id∗0) = Uid∗0

and H(Uid∗1
). For all the other keys, we proceed as in the previous case:

1. For every id /∈ {id∗0, id
∗
1} query to the random oracle H, we draw a matrix Zid ←r DZ`×m,ρ. We program

the random oracle H(id) = Uid, where Uid is now computed as Uid = ZidA.
2. For every id /∈ {id∗0, id

∗
1}, key queries of the form id‖y are answered by returning y>Zid.

Challenge queries to answer a challenge encryption for x0 under id∗0 or x1 under id∗1, we pick uniformly at
random a bit β and reply with:

(c0, c1 +
⌊
q
K

⌋
· x0), if β = 0 and (c0, c2 +

⌊
q
K

⌋
· x1), if β = 1

If the LWE oracle outputs a uniformly random element, then AdvGame1(A) ≤ AdvLWEq,α,n(A) and the view
is identical to Game1. When the LWE oracle outputs an element of the form c = Bd+g, with d←r Znq and
g ←r DZm+2` , the split into (c0, c1, c2) ∈ Zmq × (Z`q)2 produces ciphertexts formed exactly as in Game0.

We are left to argue that (A,Uid∗0
,Uid∗1

) in Game1 is distributed statistically close as in Game2, which is
the case by Lemma 4.6.

We have thus proven that:

AdvIND-FE-CPA(A) ≤ 1
Q2 max(AdvLWEq,α,n(A),AdvLWEq,σ/q,n(A)) ≤ 1

Q2AdvLWEq,α,n(A),

where Q is the number of random-oracle queries.
ut

28

5 A Lattice-Based Identity-Based Functional Encryption in the Standard
Model

In this section, we present a lattice-based IFE construction for the inner-product functionality in the stan-
dard model. However, before doing so, we first recall some known results that we are going to use in our
construction and security proofs.

5.1 Preliminaries

Lemma 5.1 ([BGG+14]). Let n, m, q > 0 be integers, where q prime. There exist polynomial time
algorithms, such that:

– TrapGen(1n, 1m, q) → (A,TA) ([Ajt99,AP09,MP12]): a PPT algorithm that, for m = Θ(n log q), outputs a
full-rank A ∈ Zn×mq and a basis TA ∈ Zm×m for Λ⊥q (A). In addition, A is negl(n)-close to uniform and
‖T̃A‖ = O(

√
n log q), with overwhelming probability in n.

– ExtendRight(A,TA,B) → T(A|B) ([CHKP10]): a deterministic algorithm that for full-rank A,B ∈ Zn×mq

and a basis TA ∈ Zm×m of Λ⊥q (A), outputs a basis T(A|B) of Λ⊥q (A|B). In addition ‖T̃A‖ = ‖T̃(A|B)‖.
– ExtendLeft(A,G,TG,S) → T(A|G+AS) ([ABB10a]): a deterministic algorithm that for full-rank A,G ∈

Zn×mq and a basis TG of Λ⊥q (G), outputs a basis T(A|G+AS) of Λ⊥q (A|G+AS). In addition ‖T̃(A|G+AS)‖ ≤
‖T̃G‖(1 + ‖S‖2).

– For m = n, there exists a full-rank gadget matrix G ∈ Zn×mq for which Λ⊥q (G) has a publicly known basis
TG, where ‖T̃G‖ ≤

√
5

Theorem 5.2 (SampleLeft [ABB10a]). Let q > 2, full rank A,B ∈ Zn×mq with m > n, a basis TA of
Λ⊥q (A), a matrix U ∈ Zn×`q and σ > ‖T̃A‖·ω(

√
logm). Then there exists PPT algorithm SampleLeft(A,TA,

B,U, σ) that outputs a matrix X ∈ Z2m×`
q , distributed statistically close to DΛu

q (A|B),σ.

Theorem 5.3 (SampleRight [ABB10a, CHKP10]). Let q > 2, full rank A ∈ Zn×mq with m > n,
matrices S ∈ Zm×mq , U ∈ Zn×`q , y 6= 0 ∈ Zq and σ =

√
5 · (1 + ‖S‖2) · ω(

√
logm). Then there exists

PPT algorithm SampleRight(A,S, y,U, σ) that outputs a matrix X ∈ Z2m×`
q , distributed statistically close to

DΛu
q (A|AS+yG),σ, where G is the gadget matrix from Lemma 5.1.

Lemma 5.4 (Bounding the Norm of a {±1}k×m Matrix [ABB10a]). Let R be a matrix chosen
uniformly at random from {±1}k×m. There exists a universal constant C ′, for which:

Pr[‖R‖ ≥ C ′
√
k +m] < 1

ek+m
.

Lemma 5.5 ([Cai98] Gram-Schmidt Minimum). For any arbitrary integer lattice Λ, it holds that:

1 ≤ min
B
‖B̃‖ ≤ λ1(Λ∗) ·O(n),

with the minimum is over all (ordered) bases B of lattice Λ.

Lemma 5.6 ([ABB10a]). Let q prime and m > (n + 1) log q + ω(log n). Let S be chosen uniformly from
{±1}m×k mod q, with k polynomial in n. Let A, B be chosen uniformly from Zn×mq and Zn×kq . Then, for
every e ∈ Zmq , we have that the distributions (A,AS,S>e) and (A,B,S>e) are statistically close.

To encode identities, we need to recall the following definition from [ABB10a]:

Definition 5.7 ([ABB10a] Encoding Identities as Matrices). Let q be a prime and n a positive integer.
We say that a function H : Znq → Zn×nq is an encoding with full-rank differences when:

29

– for all distinct u, v ∈ Znq , the matrix H(u)−H(v) ∈ Zn×nq has full-rank
– H must also be computable in polynomial time in n log q.

A scheme for encodings with full-rank differences has been introduced by [ABB10a].

Definition 5.8 (Identity-Based Encryption). An Identity-Based Encryption scheme is a tuple of four
algorithms (Setup,Extract,Encrypt,Decrypt). The first algorithm, Setup produces some public parameters pk
and a master secret key mk. Extract(mk, id) generates private keys skid, associated to any given identity id.
Encrypt produces encryptions under a target identity id using the public parameters pk, and Decrypt will
take as input a key skid and a ciphertext ct of some message x - it will recover the initial message x if
ct = Enc(pk, id, x).

Definition 5.9 (Indistinguishability from Random). This security notion for IBE implies both indis-
tinguishability and receiver anonymity (meaning that for every id, without skid, one is not able to determine
whether any ciphertext is encrypted under id). Moreover, any ciphertext should be indistinguishable from a
uniformly random element from the ciphertext space. More formally, consider the following security game
for any stateful PPT adversary A, and every security parameter λ, and β ∈ {0, 1}:

Experiment INDr-sID-CPAβ(1λ,A):

id∗ ← A(1λ)
(pk,mk)← Setup(1λ)
x∗ ← AExtract(·) (pk)
ct? ←r C
if β = 0 then ct? ← Enc(pk, id∗, x∗)
β′ ← AExtract(·) (pk, ct?)
Output: β′

where C is the ciphertext space. Extract(·) is an oracle that on input id, outputs Extract(mk, id), only if
id 6= id∗.

An identity encryption scheme is INDr-sID-CPA-secure if for every PPT adversary A, the following
advantage is a negligible function of λ:

AdvINDr-sID-CPA
A (λ) =

∣∣Pr
[
INDr-sID-CPA0(1λ,A) = 1

]
−

Pr
[
INDr-sID-CPA1(1λ,A) = 1

]∣∣
5.2 Our Construction

In this section, we combine the construction idea showcased in Section 4 with the standard-model IBE of
[ABB10a]. Similarly to the random-oracle model, we prove the resulting scheme anonymous, a property
inherited by the underlying IBE scheme [ABB10a] we build on. What we obtain is a scheme which is
selectively secure with respect to the identities id∗0, id

∗
1 used for the challenges x0 and x1. Since the scheme

will make use once again of ALS as a building block, the security will be adaptive with respect to the
challenge vectors x0,x1 themselves. The construction is described in Fig. 12. From our choice of q, this error
is small enough to allow correct decryption.

Parameters Recall that plaintext vectors x ∈ X = {0, . . . , P − 1}, decryption key vectors y ∈ Y =
{0, . . . , V − 1} and when identities match, we recover 〈x,y〉 ∈ {0, . . . ,K − 1} with K = `PV . A first-time
reader may want to skip this paragraph, as it references steps of the proof. Combining the ALS requirements
from Appendix A with the parameters from [ABB10a]. our scheme parameters must satisfy the following:

– We start with ALS parameters nALS (the security parameter), qALS, σALS, ρALS, mALS = 2nALS log q,
n = nALS, αALS, chosen as in Appendix A.

30

Setup(1λ,X ,Y):
(A,TA)←r TrapGen(1n, 1m)
B,D←r Zn×mq

mpk← (A,B,D)
msk← TA

Return (mpk,msk)

KeyGen(id,y):
Hid ← (A|B+H(id) ·G)
Rid ←r SampleLeft(A,TA,B+H(id) ·G,D, ρ)
Return (y, skid,y := (Rid · y))

Enc(mpk, id,x):
Hid ← (A|B+H(id) ·G) ∈ Zn×2m

q

s←r Znq
S←r {±1}m×m
e1 ←r DZ2m,σ

e2 ←r DZn,σ
e3 ←r DZn,τ
f ← (Im|S)> · e1

ct1 ← H>ids+ f

ct2 = D>s+ e2 + e3 +
⌊
q
K

⌋
· x

Return (ct1, ct2)

Dec
(
ct1, ct2, skid,y,y):

µ = y> · ct2 − sk>id,y · ct1
µ′ = argminµ′∈{0...K+1}

∣∣∣⌊ qK ⌋ · µ− µ′∣∣∣
Return µ′

Fig. 12. An identity-based inner-product functional encryption scheme IFE . FunctionH is an encoding with full-rank
difference, as in Definition 5.7. Algorithms TrapGen and SampleLeft are described in Lemma 5.1 and Theorem 5.2.
Noise e3 is non-smudging and is of a different standard deviation τ , this is needed for the security proof.

– From the ALS reduction in Game5, σ = σALS, q = qALS, n = nALS. m = mALS, ρ = ρALS.
– SampleLeft and SampleRight, we require that ρ > m · ω(

√
logm).

– TrapGen requires that m > 6n log q.
– Leftover hash lemma, this carries over from ALS parameters.
– Guessing TA step: ρ > n·ω(

√
n). Notice that increasing ρALS can be done without invalidating LWE security.

We only need to increase qALS to satisfy correctness.
– Hardness of LWE: αq > 2

√
n.

– NoiseGen: The spectral norm of S∗ can be upper-bounded (by using the Frobenius norm) by s1(S∗) ≤ m.
Using Lemma 4.1, s1(Z2) ≤ C · ρ(2

√
n+
√
m), which implies that τ ≥ C ·mρ(2

√
n+
√
m).

– Correctness: q > 2K`V (σ + τ) + C ′σρ4m
√
`nmV .

Therefore, we choose ALS parameters, and then modify the following to satisfy our additional constraints:
• m ≥ 6n log q.
• q is now q > 2K`V (σ + τ) + C ′σρ4m

√
`nmV .

• τ ≥ C ·mρ(2
√
n+
√
m).

Lemma 5.10 (Decryption correctness). For parameters n,m, q, σ, ρ, τ , chosen as in the previous para-
graph, the scheme from Fig. 11 is correct.

Proof. µ = y> · ct2 − sk>id,y · ct1 = y>D>s + y>e2 + y>e3 +
⌊
q
K

⌋
〈x,y〉 − y>R>idH

>
ids− y>R>idf . We know that

HidRid = D, therefore the expression above can be rewritten as:

µ =
⌊
q
K

⌋
〈x,y〉+ y>e2 + y>e3 − y>R>idf︸ ︷︷ ︸

error terms

By Lemma 4.2, we now bound the error terms, by rewritting them as: y>e2 + y>e3 − y>R>idf = y>e2 +
y>e3 − y>R>id(Im|S)>e1. Since Rid ∈ Z2m×n

q , we know that ‖Rid‖ ≤ ρ
√

2mn. Also ‖S‖ ≤ C
√

2m, ‖e1‖ ≤
σ
√

2m, ‖e2‖ ≤ σ
√
` and ‖e3‖ ≤ τ

√
`. Now, ‖y‖ ≤

√
`V , therefore ‖y>e2‖ ≤ σ`V , ‖y>e3‖ ≤ τ`V and

‖y>R>id(Im|S)>e1‖ ≤ C ′σρ4m
√
`nmV , where the last inequality is derived from Lemma 5.4. Therefore, the

final error term is upper bounded by `V (σ + τ) + C ′σρ4m
√
`nmV . ut

31

Remark 5.11 (Inheriting Anonymity). Towards proving security, we recall the observation made during the
proof of our random-oracle construction. Assume that id∗0 6= id∗1 - if the adversary was allowed to obtain
secret keys for either id∗0‖y or id∗1‖y, for any y, then it could trivially distinguish between encryptions of x0

under id∗0 and encryptions of x1 under id∗1. This type of trivial attack is excluded by the SEL-IND definition,
therefore we conclude that the adversary cannot obtain decryption key queries for neither id∗0 or id∗1. Then,
there are no functional keys and the adversary interacts with what is essentially an identity-based encryption
scheme (in our case, exactly the scheme of [ABB10a]). Therefore, since [ABB10a] satisfies INDr-sID-CPA
(see Definition 5.9), our scheme will trivially also satisfy the same security notion.

We can now state the following security theorem:
Theorem 5.12 (SEL-IND Security). Let n be the security parameter and consider the ALS functional
encryption scheme (Appendix A) with parameters q, σ, ρ, m, n, α. As long as ALS is secure under the
LWEq,α,n and the ALS parameters satisfy in addition m ≥ 6n log q, q > 2K`V (σ+ τ) +C ′σρ4m

√
`nmV , the

scheme in Fig. 12 with τ ≥ C ·mρ(2
√
n+
√
m) is SEL-IND secure under the LWEq,α,n assumption.

Proof. Since the case of id∗0 6= id∗1 follows from Remark 5.11, we focus on the more difficult case when
id∗ = id∗0 = id∗1. The proof follows the outline of the original [ABB10a]. The novelty is the adaptation
for supporting functional decryption keys. An additional step we did not encounter in the random oracle
construction is that here, when matrix A is switched from its trapdoored version to uniformly random, the
simulator still needs to have access to a short basis in order to answer key decryption queries for the case
id∗. This is a difference from the proof of [ABB10a], where they do not need to answer any queries for the
punctured identity id∗. Since our proof is selective with respect to the identity of the challenges, we assume
that we have access to id∗. We also make use of noise rerandomization and correction techniques from [KY16],
which is why we require an additional non-smudging noise e3.

Game 0 This is the original SEL-IND game, the challenge plaintexts are (x0,x1).

Game 1 Instead of choosing (A,T) ←r TrapGen(1n, 1m), choose A to be uniformly random. To compute
decryption keys, we can enumerate all short possible basis TA of Λ⊥q (A) and use one of these short basis
to generate decryption keys. This game is inefficient and indistinguishable from the previous one by the
properties of TrapGen() (see Lemma 5.1). Since the indistinguishability is derived from a statistical argument,
it is not problematic that this game is inefficient.

However, we need to ensure that the lattice spanned by A actually has a short basis. For this, we use
Lemma 5.5, which says that: minB‖B̃‖ ≤ O(n), which means that in order to use the SampleD algorithm,
we need to set our standard deviation ρ > n · ω(

√
n). This will require us to increase the standard deviation

ρ used in SampleLeft, which in turn will lead to a larger modulus than in our random oracle scheme.

Game 2 In this game, we switch the computation of D to be programmed to D = Hid∗Z, where Z ←r
DZ2m×n,ρ, using SampleD. We now justify that this change is (statistically) indistinguishable for the adversary.
Recall that Hid∗ = (A|B +H(id∗)G). Since B and A are uniformly random, we can apply Lemma 4.6 and
argue that Hid∗Z = (A|B + H(id∗)G)Z is close to uniformly random over Zn×` (which is how D was
generated in Game1).

The role of Rid∗ is played by Z. Use Z to answer decryption key queries for id = id∗, as skid∗‖y = Z ·y. For
all other decryption key queries, we still compute Rid ←r SampleLeft(A,TA,B + H(id)G,D) and output
Rid∗y

Game 3 MatrixTA must still be found by enumeration. The matrix S∗ which will be chosen for the challenge
ciphertext is now picked at ley generation, just as in [ABB10a]. B is now chosen as B = AS∗ −H(id∗)G.
f := (Im|S)>e1. By Lemma 5.6, we know that if A is uniform over Zn×mq and S uniform over {±1}m×m, the
distribution (A,B, (S∗)>e1) is statistically close to (A,AS∗, (S∗)>e1), where B is uniform over Zn×mq . Note
that the distributions are close for any choice of e, so e can be known to a distinguishing adversary in this
step.

32

Game 4 This game is now efficient. Use SampleRight(A,S, H(id)−H(id∗),D, ρ) with standard deviation ρ to
generateRid, for id 6= id∗. This is possible due to the identity encoding function (Definition 5.7), which ensures
that H(id)−H(id∗) is non-zero, one of the requirements of the SampleRight algorithm. For id = id∗, the de-
cryption keys are generated using the secret matrix Z. This game is indistinguishable from the previous game
due to Theorem 5.2, which says that the computed Zid is statistically close to DΛU

q (A|AS+(H(id)−H(id∗)G),σ.
This holds as long as the standard deviation ρ satisfies the constraints of Theorem 5.3.

Game 5 In this final game, we rely on the security of ALS to argue indistinguishability of ciphertexts. We
interact with the AD-CPA challenger for ALS. We receive as public keys AALS and DALS. We simulate the
view of the adversary in the following manner:

– Setup: set A := A>ALS, pick Z2 ←r DZn×m,σ,S
∗ ←r {±1}m×m and set D = DALS + AS∗Z2.

– Decryption keys for id∗‖y: Ask the ALS functional key oracle for key y, obtain sky, return skid∗‖y =(
sky
Z2y

)
, which we can compute since we know Z2.

– Decryption keys for id 6= id∗: Using SampleRight as in previous games.
– Challenge ciphertext upon receiving x0,x1 from the adversary, we forward them to the ALS challenger

and receive (ctALS
1 , ctALS

2). Then, compute and return:

ct1 = ctALS
1 + (S∗)>ctALS

1

ct2 = ctALS
2 + Z>2(S∗)>ctALS

1 + NoiseGen(Z>2(S∗)>, s)

In this game the advantage of the adversary is upper bounded by the advantage of breaking the ALS

scheme. It remains to show that Game5 is indistinguishable from Game4. We start by spliting Rid∗ :=

(
Z1

Z2

)
.

Then the fact that (A‖AS∗)Rid∗ = D translates to the fact that AZ1 +AS∗Z2 = D. The second matrix Z2

we can simply sample from DZn×m,ρ,c, while S∗ is known and D is programmable (since Game2). Now we
set A> = AALS and implicitly Z>1A

> = DALS (Recall that Z1 is the master secret key of ALS, so we do not
have access to it). Notice that:

ct1 = (Im|S∗)>(A>s + e1) = (A|AS∗)>s + (Im|S∗)>e1

ct2 = D>s +
⌊
q
K

⌋
· x + e2 = Z>1A

>s + Z>2(S∗)>A>s +
⌊
q
K

⌋
· xβ

,
Let e1 be the noise of the first ALS ciphertext. Then we can rewrite to:

ct1 = ctALS
1 + (S∗)>ctALS

1

ct2 = D>s +
⌊
q
K

⌋
· x + e2 + e3 = ctALS

2 + Z>2(S∗)>ctALS
1 + NoiseGen(Z>2(S∗)>, s)

As already explained in our parameter section, we can upper-bound s1(Z>2(S∗)) and we let s > s1(Z>2(S∗)).
To conclude, by the properties of NoiseGen(Z>2(S∗)>, s), we know that the noise in ct2 will be statistically
close to e2 + e3, therefore Game5 is statistically close to Game4.

ut

6 Multi-Input Inner-Product Functional Encryption with Rich Access Control

In this section, we build a multi-input FE scheme for the family of functions Fmulti
ipfe(d,B),P1,...,Pn

for a dimension
d ∈ N, a bound B ∈ N, and n predicates P1, . . . ,Pn ∈ P, where each predicate takes as input an attribute in

33

the universe U , and returns a bit. Each function is described by a set of indices S ⊆ [n], and for each index
∈ S, an associated pair (atti ∈ U ,yi ∈ [0, B]d). It takes as input n vectors x1, . . . ,xn ∈ [0, B]d, and outputs∑
i∈S x

>
i yi ∈ [0, ndB2] if Pi(atti) = 1 for all i ∈ S.

Note that to each input slot corresponds to a different predicate Pi, which represents a different policy
access to the encrypted data. For instance, some medical data can be considered very sensitive, and should
only be computed on by doctors, whereas other records might be slightly less sensitive, and could pertain to
the output of a computation performed by a user with lower credentials, say, a health insurance company.
Each functional secret key permits to compute a weighted sum on some part of the data for which it has
credentials (this is represented by the set S). That is, a key decrypts successfully provided it is associated
with attributes that satisfy the predicates associated with the encrypted data on which it computes.

Our construction generically transforms any single-input FE for the family of functions Fipfe(d+1,B),P
(described in Section 3) satisfying some structural properties into an MIFE for the family of functions
Fmulti

ipfe(d,B),P1,...,Pn
. We first recall the definition of multi-input FE and then describe our construction.

6.1 Definitions

Definition 6.1 (Multi-Input Functional Encryption [GGG+14]). Let F be a family of n-ary func-
tions, with f ∈ F defined as f : Xn → Y. A functional encryption scheme for F consists of the following
algorithms:

– Setup(1λ,F): takes as input the security parameter λ and a description of the function family F , and
outputs a master public key mpk (which is implicitly part of the inputs of all other algorithms), a master
secret key msk, and n encryption keys ek1, . . . , ekn.

– Enc(eki, xi): takes as input an encryption key eki, a message xi ∈ X , and outputs a ciphertext cti.
– KeyGen(msk, f): takes as input the master secret key msk, a function f ∈ F . It outputs a functional

decryption key skf .
– Dec

(
skf , (ct1, . . . , ctn)

)
: takes as input the functional decryption key skf along with ciphertexts (ct1, . . . ,

ctn). It outputs a value y ∈ Y or the special symbol ⊥ if it fails.

A scheme as defined above is correct if for all security parameter λ, f ∈ F , x1, . . . , xn ∈ X , we have:
Pr
[
Dec

(
skf , (ct1, . . . , ctn)

)
= f(x1, . . . , xn)

]
= 1 where the probability is taken over (mpk,msk, (ek1, . . . ,

ekn))← Setup(1λ,F), cti ← Enc(eki, xi) for all i ∈ [n], skf ← KeyGen(msk, f).

Definition 6.2 (AD-IND security). For every functional encryption MIFE, every security parameter
λ, every stateful adversary A, we define the following experiments for β ∈ {0, 1}:

Experiment AD-INDFEβ (1λ,A):

(mpk,msk, (ek1, . . . , ekn))← Setup(1λ,F)
β′ ← AOCorrupt(·),OKeyGen(·),OEnc(·,·,·)(mpk)
Output: β′

where n is the number of users; on input i ∈ [n], the oracle OCorrupt(i) returns eki and adds i to the set Corr
of corrupted users; on input tuples of the form (i, x0, x1) where i ∈ [n], x0, x1 ∈ X , the oracle OEnc(i, x0, x1)
returns Enc(eki, x

β) and adds (i, x0, x1) to the list of queries, denoted by Q; on input a function f ∈ F of
arity n, the oracle OKeyGen(f) returns the functional decryption key skf ← KeyGen(msk, f).

We denote by I the set of pairs
(

(x0
1, . . . , x

0
`), (x

1
1, . . . , x

1
`)
)
where for all i ∈ Hon, (i, x0

i , x
1
i) ∈ Q and for

all i ∈ Corr, x0
i = x1

i ∈ X . We require that for all functions f queried to OKeyGen, we have: f(x0
1, . . . , x

0
`) =

f(x1
1, . . . , x

1
`) for all pairs

(
(x0

1, . . . , x
0
`), (x

1
1, . . . , x

1
`)
)
∈ I.

Moreover, we require that for all users i that are corrupted during the game, all the queries of the form
(i, x0, x1) ∈ Q are such that x0 = x1.

34

Using generic transformations from [ABKW19, Gay19], which build upon [AGRW17, DOT18], we can
assume without loss of generality that, if i ∈ Hon, then there exists a query (i, x0

i , x
1
i) ∈ Q.

A multi-input functional encryption scheme FE is AD-IND-secure if for every PPT adversary A, the
following advantage is a negligible function of λ:

AdvAD-INDFE,A (λ) =
∣∣Pr

[
AD-INDFE0 (1λ,A) = 1

]
− Pr

[
AD-INDFE1 (1λ,A) = 1

]∣∣
We define one-time security with its associated games ONE-AD-INDFEb and advantage AdvONE-AD-IND

FE,A (λ)
similarly, except the adversary can make at most one query of the form (i, x0

i , x
1
i) for each slot i ∈ [n].

There are weaker security notions, where the set of corrupted users Corr, or the set of queries Q is chosen
beforehand by the adversary. The former restriction is referred to as static corruptions, whereas the second
restriction is referred to as selective security.

6.2 Generic Construction

We show that the techniques used in [ACF+18,AGRW17] to generically transform any single-input FE for
inner products into a multi-input FE for inner products are compatible with our single-input FE. Thus,
we obtain an MIFE for the family of functions Fmulti

ipfe(d,B),P1,...,Pn
, described in Fig. 13, which relies on any

single-input FE (Setup′,Enc′,KeyGen′,Dec′) for the family of functions Fipfe(d+1,B),P , such as described in
Section 3, satisfying the following properties:

1. Pairing-based: ciphertexts contain groups elements in G1 and functional decryption keys contain groups
elements in G2, for a pairing group PG = (G1,G2,GT , p, P1, P2, e)← PGGen(1λ), with p� B.

2. Large inputs: The algorithms Enc′ and KeyGen′ can take as input arbitrary vectors in Zdp (as opposed
to vectors in [0, B]d for a polynomial bound B) and the decryption returns [x>y]T ∈ GT .

3. Linear homomorphism: There is a PPT algorithm Add such that for all x,x′ ∈ Zdp and P ∈ P,
the following are identically distributed: (Enc′(mpk,P,x),Enc′(mpk,P,x + x′)) and (Enc′(mpk,P,x),
Add(Enc′(mpk,P,x),x′)). That is, Add can produce a fresh encryption of x + x′ from an encryption of
x, for a given predicate P ∈ P.

It is not hard to verify that our scheme in Section 3.1 satisfies these properties.

Setup(1λ,Fmulti
ipfe(d,B),P1,...,Pn

):

For all i ∈ [n]: (mpki,mski)← Setup′(1λ,Fipfe(d,B),P), ui ←r Zdp.
Return mpk := {mpki}i∈[n], msk := {mski,ui}i∈[n], {eki := ui}i∈[n].

Enc(eki,xi):
cti ← Enc′ (mpki,Pi,xi + ui mod p). Return cti.

KeyGen(msk,S, (attj ,yj)j∈S):
If there exists j ∈ S such that Pj(attj) = 0, the return ⊥. Otherwise, for all j ∈ S, sk′j ← KeyGen′ (mskj , attj ,yj).

Return skatt,y :=
(
S, {sk′j}j∈S ,

∑
j∈S y

>
j uj

)
.

Dec
(
skatt,y, (ct1, . . . , ctn)

)
:

Parse skatt,y :=
(
S, {sk′j}j∈S , z

)
For all j ∈ S, [dj]T ← Dec′(sk′j , ctj). [out]T :=

∑
j∈S [dj]T − [z]T . Return out.

Fig. 13. MIFE for the family Fmulti
ipfe(d,B),P1,...,Pn

, where P1, . . . ,Pn ∈ P. Here, FE ′ := (Setup′,Enc′,KeyGen′,Dec′) is a
SEL-IND secure FE for the family Fipfe(d,B),P , satisfying the structural properties listed in Section 6.2.

35

Correctness. Let S ⊆ [n], xi ∈ [0, B]d for i ∈ [n], yj ∈ [0, B]d, attj ∈ U for j ∈ S, such that for all j ∈ S,
Pj(attj) = 1. We have, by correctness of the single-input FE, for all j ∈ S, [dj]T := [x>j yj + u>j yj]T . Thus,
[out]T := [

∑
j∈S x

>
j yj +u>j yj]T − [z]T = [

∑
j∈S x

>
j yj]T , and the decryption can efficiently recover out, since

the output belongs to [0, ndB2], which is polynomially bounded.

Theorem 6.3 (IND security). The MIFE presented in Fig. 4 MIFE is AD-IND secure (respectively
SEL-IND secure) as long as the underlying single-input FE FE ′ is AD-IND secure (respectively SEL-IND
secure). Namely, for any PPT adversary A, there exists a PPT adversary B such that:

AdvAD-INDMIFE,A(λ) ≤ n · AdvAD-INDFE′,B (λ) + negl(λ).

Similarly, for any PPT adversary A, there exists a PPT adversary B such that:

AdvSEL-INDMIFE,A(λ) ≤ n · AdvSEL-INDFE′,B (λ) + negl(λ).

The proof, as in [ACF+18,AGRW17], proceeds in two steps, where we first prove perfect one-time security,
then boost it to many-time security using the many-time security of the underlying single-input FE. The
adaptive and selective settings have very similar proofs, thus, we only give the proof in the adaptive setting,
which is the most technical.
Proof. First, in Lemma 6.4, we show that for any adversary A, we have:

AdvONE-AD-IND
MIFE,A (λ) = 0.

Next, for all PPT adversaries A, we show there exist PPT adversaries B1 and B2 such that:

AdvAD-INDMIFE,A(λ) ≤ AdvONE-AD-IND
MIFE,B1

(λ) + n · AdvAD-INDFE′,B2
(λ) + negl(λ).

The proof uses a series of hybrid games, described in Fig. 14. For game Gj for all j ∈ [1, 3], we denote by
Advj(A) the probability that game Gj outputs 1 when interacting with A. Here, for any input slot i ∈ [n],
we denote by (i,xj,0i ,xj,1i) the j-th query for slot i ∈ [n] (note that there can be many such queries for each
slot).

It is clear that games G1 and G3 correspond to AD-INDFE0 (1λ,A) and AD-INDFE1 (1λ,A), respectively.
We show in Lemma 6.5 that there exists a PPT adversary B1 such that

|Adv1(A)− Adv2(A)| ≤ AdvONE-AD-IND
MIFE,B1

(λ).

We show in Lemma 6.6 that there exists a PPT adversary B2 such that

|Adv2(A)− Adv3(A)| ≤ n · AdvAD-INDFE′,B2
(λ) + negl(λ).

ut

Lemma 6.4. For any adversary A, we have:

AdvONE-AD-IND
MIFE,A (λ) = 0.

Proof. We first define a game G0, which samples a random bit β ←r {0, 1}, and a guess of all the queries
(w0

i ,w
1
i) ←r ([0, B]d)2 for all i ∈ [n]. Then the experiment behaves as AD-INDFEβ (1λ,A). At the end of

the experiment, the adversary A outputs a bit β′. If the guess was successful, that is, the queries made by A
were predicted correctly, with w0

i = x0
i and w1

i = x1
i , then the experiment outputs β′. Otherwise, it outputs

a random bit β′ ←r {0, 1}. We define the advantage AdvG0(λ) := 2 · |1/2 − Pr[β′ = β|β′ ← G0]|. We have:
AdvG0(λ) = B2dn · AdvONE-AD-IND

MIFE,A (λ).
Now, we show that AdvG0(λ) = 0, which implies that AdvONE-AD-IND

MIFE,A (λ) = 0. We use the fact that
{ui}i∈[n], is identically distributed to {ui + w1

i −w0
i }i∈[n], where ui,w

0
i ,w

1
i ←r Zdp.

36

When the guess is successful, that is, when w0
i = x0

i and w1
i = x1

i for all i ∈ [n], the first distri-
bution corresponds to case where b = 0 in the experiment G0, with challenge ciphertexts of the form
Enc′(mpki,Pi,x

0
i + ui mod p) and keys of the form

(
{KeyGen′(mski, atti,yi)}i∈[n],

∑
i∈[n] u

>
i yi

)
, whereas

the second distribution corresponds to the case where b = 1 in the experiment G0, with challenge ciphertexts
of the form Enc′(mpki,Pi,x

0
i + (ui +x1

i −x0
i) mod p) = Enc′(mpki,Pi,x

1
i +ui mod p) and keys of the form

(S, {KeyGen′(mski, atti,yi)}i∈S ,
∑
i∈S(ui+x1

i −x0
i)
>yi =

∑
i∈S u

>
i yi), where the last equality uses the fact

that
∑
i∈S y

>
i x

0
i =

∑
i∈S y

>
i x

1
i , by definition of the security game. ut

Lemma 6.5 (From Game G1 to G2). There exists a PPT adversary B1 such that

|Adv1(A)− Adv2(A)| ≤ AdvONE-AD-IND
MIFE,B1

(λ).

Proof. Adversary B1 receives mpk which it forwards to A. When A queries OKeyGen or OCorrupt, B forwards
the query to its own oracle and gives back the answer to A. When A queries OEnc(i,x1,0

i ,x1,1
x) on slot i ∈ [n]

for the first time, B1 forwards the query to its own oracle and gives back the answer to A, which is of the
form ct′i ←r Enc′(mpki,Pi,x

1,b
i + ui mod p). For any subsequent queries (i,xj,0i ,xj,1x) to OEnc, that is, for

j > 1, B1 uses the linear homomorphism to compute cti ←r Add(ct′i,x
j,0
i − x1,0

i), which by property 3 is
distributed as a fresh encryption of the form Enc′(mpki,Pi,x

j,0
i + x1,b

i − x1,0
i). Note that in the case b = 0,

this corresponds to the game G1, whereas it corresponds to the game G2 when b = 1. ut

Lemma 6.6 (From Game G2 to G3). There exists a PPT adversary B2 such that

|Adv2(A)− Adv3(A)| ≤ n · AdvAD-INDFE′,B2
(λ) + negl(λ).

Proof. We switch the distribution of the challenge ciphertexts output by OEnc, one slot i ∈ [n] at a time,
using a hybrid argument. To change the ciphertexts for slot i ∈ [n], we use the security of FE ′ on (mpki,mski).
Namely, the reduction B2 samples (mpkθ,mskθ)←r Setup′(Fipfe(d,B),P) for all θ 6= i and ui ←r Zdp for i ∈ [n],
and it uses these values to simulate mpk and answer the queries (θ,xj,0θ ,xj,1θ) for all θ 6= i. B2 can also answer
queries to OCorrupt, since it knows eki := ui for all i ∈ [n]. To answer A’s queries to OKeyGen, it uses its
own oracle to compute the sk′i component of the secret key and its knowledge of mskθ for all θ 6= i and ui
for i ∈ [n] to compute the remaining components, and forwards the answer to A. Upon receiving the queries
(i,xj,0i ,xj,1i), B2 sends the queries (xj,0i + x1,1

i − x1,0
i + ui mod p,xj,1i + ui mod p) to its own experiment.

The left challenge corresponds to the game G2, whereas the right challenge corresponds to the game G3. To
use the AD-IND security of FE ′, we rely on the fact that

(xj,0i − x1,0
i)>yi = (xj,1i − x1,1

i)>yi. (1)

This is required by definition of the security game, since this information is given by the ideal functionality
(correctness of the scheme). For all i ∈ [n], any vector wi ∈ [−B, 2B]d, with probability at least 1− 3dB

p over
the choice of ui ←r Zdp, we have (ui + wi) mod p = (ui mod p) + wi. Together with (1), this implies that:

(ui +xj,0i +x1,1
i −x1,0

i mod p)>yi = (xj,0i +x1,1
i −x1,0

i)>yi + (ui mod p)>yi = xj,1
>

i yi + (ui mod p)>yi =

(xj,1i + ui mod p)>yi. That means the queries of B2 to its experiment are valid. ut

Acknowledgments. The first author was supported in part by the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement 780108 (FENTEC), by the ERC Project aSCEND (H2020
639554), and by the French FUI project ANBLIC. The third author was partially supported by a Google
PhD Fellowship in Privacy and Security. The fourth author was partially supported by the ERC Project
PREP-CRYPTO (H2020 724307). Part of this work was done while the third author was at École normale
supérieure, Paris, France, and UC Berkeley, California, USA.

37

G1, G2 , G3 :

(mpk,msk, (ek1, . . . , ekn))← Setup(1λ,Fmulti
ipfe(d,B),P1,...,Pn

)

β′ ← AOCorrupt(·),OKeyGen(·,·),OEnc(·,·,·)(mpk)

OCorrupt(i):
Return eki.

OEnc(i,xj,0i ,xj,1i):

cti ← Enc(eki,x
j,0
i + x1,1

i − x1,0
i) cti ← Enc(eki,x

j,1
i)

Return cti.

OKeyGen(S, (attj ,yj)j∈S):
skatt,y ← KeyGen(msk,S, (attj ,yj)j∈S).
Return skatt,y.

Fig. 14. Hybrid games for the proof of Theorem 6.3.

References

AARV17. B. Applebaum, B. Arkis, P. Raykov, and P. N. Vasudevan. Conditional disclosure of secrets: Amplification,
closure, amortization, lower-bounds, and separations. In CRYPTO 2017, Part I, LNCS 10401, pages 727–
757. Springer, Heidelberg, August 2017.

ABB10a. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In EURO-
CRYPT 2010, LNCS 6110, pages 553–572. Springer, Heidelberg, May / June 2010.

ABB10b. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE. In CRYPTO 2010, LNCS 6223, pages 98–115. Springer, Heidelberg, August 2010.

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner
products. In PKC 2015, LNCS 9020, pages 733–751. Springer, Heidelberg, March / April 2015.

ABDP16. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for functional encryption for
inner product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http://eprint.iacr.
org/2016/011.

ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product functional
encryption. In ASIACRYPT 2019, Part III, LNCS 11923, pages 552–582. Springer, Heidelberg, December
2019.

ABKW19. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product functional
encryption. In PKC 2019, Part II, LNCS 11443, pages 128–157. Springer, Heidelberg, April 2019.

ABS17. M. Ambrona, G. Barthe, and B. Schmidt. Generic transformations of predicate encodings: Constructions
and applications. In CRYPTO 2017, Part I, LNCS 10401, pages 36–66. Springer, Heidelberg, August
2017.

AC16. S. Agrawal and M. Chase. A study of pair encodings: Predicate encryption in prime order groups. In
TCC 2016-A, Part II, LNCS 9563, pages 259–288. Springer, Heidelberg, January 2016.

AC17. S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate encryption schemes. In
EUROCRYPT 2017, Part I, LNCS 10210, pages 627–656. Springer, Heidelberg, April / May 2017.

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for inner
products: Function-hiding realizations and constructions without pairings. In CRYPTO 2018, Part I,
LNCS 10991, pages 597–627. Springer, Heidelberg, August 2018.

AGRW17. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from
pairings. In EUROCRYPT 2017, Part I, LNCS 10210, pages 601–626. Springer, Heidelberg, April / May
2017.

AJKS18. P. Ananth, A. Jain, D. Khurana, and A. Sahai. Indistinguishability obfuscation without multilinear maps:
iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology ePrint Archive, Report 2018/615,
2018. https://eprint.iacr.org/2018/615.

Ajt99. M. Ajtai. Generating hard instances of the short basis problem. In ICALP 99, LNCS 1644, pages 1–9.
Springer, Heidelberg, July 1999.

38

http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2016/011
https://eprint.iacr.org/2018/615

AL10. N. Attrapadung and B. Libert. Functional encryption for inner product: Achieving constant-size cipher-
texts with adaptive security or support for negation. In PKC 2010, LNCS 6056, pages 384–402. Springer,
Heidelberg, May 2010.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard
assumptions. In CRYPTO 2016, Part III, LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.

AP09. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In 26th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany,
Proceedings, LIPIcs 3, pages 75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

AS17. P. Ananth and A. Sahai. Projective arithmetic functional encryption and indistinguishability obfuscation
from degree-5 multilinear maps. In EUROCRYPT 2017, Part I, LNCS 10210, pages 152–181. Springer,
Heidelberg, April / May 2017.

Att14. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional
encryption for regular languages, and more. In EUROCRYPT 2014, LNCS 8441, pages 557–577. Springer,
Heidelberg, May 2014.

Att16. N. Attrapadung. Dual system encryption framework in prime-order groups via computational pair en-
codings. In ASIACRYPT 2016, Part II, LNCS 10032, pages 591–623. Springer, Heidelberg, December
2016.

BB04. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles.
In EUROCRYPT 2004, LNCS 3027, pages 223–238. Springer, Heidelberg, May 2004.

BBG05. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext.
In EUROCRYPT 2005, LNCS 3494, pages 440–456. Springer, Heidelberg, May 2005.

BBL17. F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product functional encryption from pro-
jective hash functions. In PKC 2017, Part II, LNCS 10175, pages 36–66. Springer, Heidelberg, March
2017.

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic functions
with applications to predicate encryption. In CRYPTO 2017, Part I, LNCS 10401, pages 67–98. Springer,
Heidelberg, August 2017.

BCSW19. M. Barbosa, D. Catalano, A. Soleimanian, and B. Warinschi. Efficient function-hiding functional encryp-
tion: From inner-products to orthogonality. In CT-RSA 2019, LNCS 11405, pages 127–148. Springer,
Heidelberg, March 2019.

BF01. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO 2001, LNCS
2139, pages 213–229. Springer, Heidelberg, August 2001.

BGG+14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled
circuits. In EUROCRYPT 2014, LNCS 8441, pages 533–556. Springer, Heidelberg, May 2014.

BH08. D. Boneh and M. Hamburg. Generalized identity based and broadcast encryption schemes. In ASI-
ACRYPT 2008, LNCS 5350, pages 455–470. Springer, Heidelberg, December 2008.

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In ASIACRYPT 2015,
Part I, LNCS 9452, pages 470–491. Springer, Heidelberg, November / December 2015.

BSW07. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In 2007 IEEE
Symposium on Security and Privacy, pages 321–334. IEEE Computer Society Press, May 2007.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011,
LNCS 6597, pages 253–273. Springer, Heidelberg, March 2011.

Cai98. J.-Y. Cai. A relation of primal-dual lattices and the complexity of shortest lattice vector problem. Theor.
Comput. Sci., 207(1):105–116, October 1998.

CDG+18. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client functional
encryption for inner product. In ASIACRYPT 2018, Part II, LNCS 11273, pages 703–732. Springer,
Heidelberg, December 2018.

CGW15. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings.
In EUROCRYPT 2015, Part II, LNCS 9057, pages 595–624. Springer, Heidelberg, April 2015.

CGW18. J. Chen, J. Gong, and H. Wee. Improved inner-product encryption with adaptive security and full
attribute-hiding. In ASIACRYPT 2018, Part II, LNCS 11273, pages 673–702. Springer, Heidelberg,
December 2018.

CHKP10. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In
EUROCRYPT 2010, LNCS 6110, pages 523–552. Springer, Heidelberg, May / June 2010.

CLT18. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product functional
encryption modulo p. In ASIACRYPT 2018, Part II, LNCS 11273, pages 733–764. Springer, Heidelberg,
December 2018.

39

CS19. R. J. Connor and M. Schuchard. Blind bernoulli trials: A noninteractive protocol for hidden-weight coin
flips. In USENIX Security 2019, pages 1483–1500. USENIX Association, August 2019.

CZY19. Y. Chen, L. Zhang, and S.-M. Yiu. Practical attribute based inner product functional encryption from
simple assumptions. Cryptology ePrint Archive, Report 2019/846, 2019. https://eprint.iacr.org/
2019/846.

DDM16. P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner product with full function
privacy. In PKC 2016, Part I, LNCS 9614, pages 164–195. Springer, Heidelberg, March 2016.

DM14. L. Ducas and D. Micciancio. Improved short lattice signatures in the standard model. In CRYPTO 2014,
Part I, LNCS 8616, pages 335–352. Springer, Heidelberg, August 2014.

DOT18. P. Datta, T. Okamoto, and J. Tomida. Full-hiding (unbounded) multi-input inner product functional
encryption from the k-linear assumption. In PKC 2018, Part II, LNCS 10770, pages 245–277. Springer,
Heidelberg, March 2018.

DP19. E. Dufour Sans and D. Pointcheval. Unbounded inner-product functional encryption with succinct keys.
In ACNS 19, LNCS 11464, pages 426–441. Springer, Heidelberg, June 2019.

Gay19. R. Gay. Public-Key Encryption, Revisited: Tight Security and Richer Functionalities. PhD thesis, PSL
Research University, Paris, France, 2019.

Gay20. R. Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In PKC 2020,
Part I, LNCS 12110, pages 95–120. Springer, Heidelberg, May 2020.

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-
input functional encryption. In EUROCRYPT 2014, LNCS 8441, pages 578–602. Springer, Heidelberg,
May 2014.

GIKM00. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information
retrieval schemes. Journal of Computer and System Sciences, 60(3):592–629, 2000.

GKW15. R. Gay, I. Kerenidis, and H. Wee. Communication complexity of conditional disclosure of secrets and
attribute-based encryption. In CRYPTO 2015, Part II, LNCS 9216, pages 485–502. Springer, Heidelberg,
August 2015.

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as
Cryptology ePrint Archive Report 2006/309.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-
structions. In 40th ACM STOC, pages 197–206. ACM Press, May 2008.

GVW13. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In 45th ACM
STOC, pages 545–554. ACM Press, June 2013.

GVW15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE. In
CRYPTO 2015, Part II, LNCS 9216, pages 503–523. Springer, Heidelberg, August 2015.

JLMS19. A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree expanding polynomials
overa R to build iO. In EUROCRYPT 2019, Part I, LNCS 11476, pages 251–281. Springer, Heidelberg,
May 2019.

JLS19. A. Jain, H. Lin, and A. Sahai. Simplifying constructions and assumptions for io. Technical report,
Cryptology ePrint Archive, Report 2019/1252, 2019. https://eprint. iacr. org . . . , 2019.

KLM+18. S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-hiding inner product
encryption is practical. In SCN 18, LNCS 11035, pages 544–562. Springer, Heidelberg, September 2018.

KSW08. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations,
and inner products. In EUROCRYPT 2008, LNCS 4965, pages 146–162. Springer, Heidelberg, April 2008.

KW93. M. Karchmer and A. Wigderson. On span programs. In [1993] Proceedings of the Eigth Annual Structure
in Complexity Theory Conference, pages 102–111. IEEE, 1993.

KY16. S. Katsumata and S. Yamada. Partitioning via non-linear polynomial functions: More compact IBEs from
ideal lattices and bilinear maps. In ASIACRYPT 2016, Part II, LNCS 10032, pages 682–712. Springer,
Heidelberg, December 2016.

Lew12. A. B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting.
In EUROCRYPT 2012, LNCS 7237, pages 318–335. Springer, Heidelberg, April 2012.

Lin17. H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In
CRYPTO 2017, Part I, LNCS 10401, pages 599–629. Springer, Heidelberg, August 2017.

LT19. B. Libert and R. Titiu. Multi-client functional encryption for linear functions in the standard model from
LWE. In ASIACRYPT 2019, Part III, LNCS 11923, pages 520–551. Springer, Heidelberg, December 2019.

LVW17. T. Liu, V. Vaikuntanathan, and H. Wee. Conditional disclosure of secrets via non-linear reconstruction.
In CRYPTO 2017, Part I, LNCS 10401, pages 758–790. Springer, Heidelberg, August 2017.

40

https://eprint.iacr.org/2019/846
https://eprint.iacr.org/2019/846

LW10. A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In TCC 2010, LNCS 5978, pages 455–479. Springer, Heidelberg, February 2010.

MG02. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective. Kluwer
Academic Publishers, Boston, Massachusetts, 2002.

MP12. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EURO-
CRYPT 2012, LNCS 7237, pages 700–718. Springer, Heidelberg, April 2012.

MR04. D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. In 45th
FOCS, pages 372–381. IEEE Computer Society Press, October 2004.

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. http://eprint.iacr.org/2010/556.

OT09. T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-products. In ASI-
ACRYPT 2009, LNCS 5912, pages 214–231. Springer, Heidelberg, December 2009.

OT12. T. Okamoto and K. Takashima. Adaptively attribute-hiding (hierarchical) inner product encryption. In
EUROCRYPT 2012, LNCS 7237, pages 591–608. Springer, Heidelberg, April 2012.

Pei07. C. Peikert. Limits on the hardness of lattice problems in `p norms. IEEE Conference on Computational
Complexity, pages 333–346, 2007.

PR06. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic
lattices. In TCC 2006, LNCS 3876, pages 145–166. Springer, Heidelberg, March 2006.

Reg05. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th ACM STOC,
pages 84–93. ACM Press, May 2005.

RPB+19. T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, and R. Gay. Partially encrypted deep learning using
functional encryption. In Advances in Neural Information Processing Systems 32, pages 4519–4530. Curran
Associates, Inc., 2019.

Sha84. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO’84, LNCS 196, pages 47–53.
Springer, Heidelberg, August 1984.

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, LNCS 3494, pages
457–473. Springer, Heidelberg, May 2005.

TT18. J. Tomida and K. Takashima. Unbounded inner product functional encryption from bilinear maps. In
ASIACRYPT 2018, Part II, LNCS 11273, pages 609–639. Springer, Heidelberg, December 2018.

Wat09. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
CRYPTO 2009, LNCS 5677, pages 619–636. Springer, Heidelberg, August 2009.

Wee14. H. Wee. Dual system encryption via predicate encodings. In TCC 2014, LNCS 8349, pages 616–637.
Springer, Heidelberg, February 2014.

Wee17. H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In TCC 2017, Part I, LNCS
10677, pages 206–233. Springer, Heidelberg, November 2017.

WFL19. Z. Wang, X. Fan, and F.-H. Liu. FE for inner products and its application to decentralized ABE. In
PKC 2019, Part II, LNCS 11443, pages 97–127. Springer, Heidelberg, April 2019.

41

http://eprint.iacr.org/2010/556

Setup(1λ,X ,Y):
A←r Zm×nq

Z←r DZ`×m,ρ
D← ZA ∈ Z`×nq

mpk← (A,D)
msk← Z
Return (mpk,msk)

KeyGen(msk,y):
Return (y, skid,y := (y>Z))

Enc(mpk,x):
s←r Znq
e1 ←r DZm,σ

e2 ←r DZ`,σ

ct1 ← As+ e1

ct2 = Ds+ e2 +
⌊
q
K

⌋
· x

Return (ct1, ct2)

Dec
(
ct1, ct2, skid,y,y):

µ = y> · ct2 − skid,y · ct1
µ′ = argminµ′∈{0...K+1}

∣∣∣⌊ qK ⌋ · µ− µ′∣∣∣
Return µ′

Fig. 15. The ALS inner-product functional encryption scheme FE from [ALS16].

A The ALS inner-product functional encryption scheme

In this appendix, we recall the inner-product functional encryption scheme from [ALS16], which we denote as
ALS. The proof described here is the same as [ALS16], except for a small modification described in [WFL19].
The novelty of [WFL19] is that they described how a rerandomization technique due to [KY16] can be used
to simplify the proof of the ALS scheme and improve its parameters. What is changed is that the matrix Z
has a different distribution from [ALS16], which allows us to combine this scheme with the random-oracle
based IBE of [GPV08] and the standard model IBE of [ABB10a]. The construction is described in Fig. 15.
This variant of ALS has the matrix Z ←r DZ`×m,ρ, rather than the slightly more complicated distribution
in the original description of the scheme.

Choice of Parameters We first set X = {0, . . . , P − 1}`,Y = {0, . . . , V − 1}`, the output must belong to
gs to {0, . . . ,K − 1} with K = `PV . First we set the parameters for correctness:

– From Lemma 4.2, we know that every entry of D is with overwhelming probability bounded by ω(log n),
so ‖D‖ ≤

√
` · ω(log n), as long as ρ ≥ ω(

√
log n).

– Now we bound ‖y>De1‖ ≤ `
√
`V ω(log2 n) and ‖ye2‖ ≤ `V ω(

√
log n), as long as σ ≥ ω(

√
log n).

– For decryption to suceed, we want that the error terms are smaller than q
2K , which implies: q ≥

2K`
√
`V ω(log2 n)

We therefore have the following lemma:

Lemma A.1. For q ≥ 2K`
√
`V ω(log2 n), σ, ρ > ω(

√
log n) the ALS scheme from Fig. 15 is correct.

The security reduction is with respect to LWEq,α,n, where the modulus will be much larger than K. Denote
the standard deviation r := αq. To ensure security, we need to satisfy the following requirements:

– NoiseGen rerandomization: looking ahead in the security proof, we require that the singular value s1(V)
of V is bounded by h := Ω(ρ(

√
` +
√
m +

√
n)) (see the security proof for exact values and security

parameter n). Then, in order for NoiseGen to provide security guarantees, we must set σ ≥ 2 · r ·h. Since
h depends on the gaussian parameter ρ of matrix Z, this establishes a relation between ρ and σ.

– Min-entropy requirement: since ρ > ω(
√

log n), the min-entropy requirement is satisfied (as long as
n > 2.303) and m ≥ (2n log q + 2n)/ log(4/3).

– Leftover hash lemma: this is satisfied as long as m is much larger than n (see [ALS16, Lemma 11]). For
the purposes of this paper, we will choose m = 2n log q.

Putting all requirements together, we choose as parameters:

42

q ≥ 2K`
√
`V ω(log2 n)

σ = 2Cαq(
√
m+

√
n+
√
`)

ρ ≥ ω(
√

log n).
m = 2n log q

LWEq,α,n is reducible to lattice problems in dimension n when qα ≥ Ω(
√
n). With this choice of parameters,

we have the following theorem:

Theorem A.2. [ALS16,WFL19] Let n be the security parameter,m ≥ 2n log q and q,σ, ρ, α ≤ σ
2Cαq(

√
m+
√
n+
√
`)

as described above. Then, the scheme from Fig. 15 is AD-IND-secure, assuming that LWEq,α,n is hard.

Proof. As mentioned previously, we recall the proof of the ALS scheme from [ALS16] in which Game 2 is
modified with the idea described in [WFL19].

Game 1 This is the AD-IND game.

Game 2 Draw an error e ←r DZm,r and then compute c = As + e. Let Im denote the m × m identity

matrix. Now we apply Lemma 4.7 for V =

(
Im
Z

)
∈ Z(m+`)×m. Let σ′ > s1(V). By Lemma 4.1, we know

that s1(Z) ≤ Cρ(
√
` +
√
m +

√
λ) except with 1

e2πλ
probability and we use this to argue that s1(V) ≤√

(Cρ(
√
`+
√
m+

√
λ))2 + 1

By computing c′ = Vc+NoiseGen(V, σ′), we obtain c′ = V · c+ f , where f ←r DZm+`,2rσ′ . Notice that
we can split c′ into ct1 ← As + e1 and ct2 ← Ds + e2, where e1 ← DZm,2rσ′ and e2 ← DZ`,2rσ′ . Now, to

simulate ct2 correctly, we need to compute ct′2 = ct2 +
⌊
q
K

⌋
· xβ .

Game 3 By the LWE assumption, we change c = As+e into a uniformly random element u of Zmq . Now we
argue that in this game, the probability the adversary has of winning is 1

2 . This step of the proof is identical
to [ALS16, Theorem 2], which we recall here for completeness.

Consider yi the decryption key queries made by the adversary. Then, 〈x0,y
i〉 = 〈x1,y

i〉 over Z, for all i.
Define x := 1

g (x1−x0) = 1
g (x1, . . . , x`), where g 6= 0 is the gcd of all coefficients of x0−x1. Since 〈x,yi〉 = 0,

this means all decryption key queries must belong to the lattice {y ∈ Z` : 〈x,y〉 = 0}. Assume without loss
of generality that the first n0 entries of x are zero, while the rest are non-zero.

Define matrix Ytop =



In0

−xn0+2 −xn0+1

−xn0+3

.

−x` x`−1


∈ Z`−1×(`)

Then they write Ybot = x> ∈ Z1×` and define Y :=

(
Ytop

Ybot

)
∈ Z`×`q . By induction, they show that

det(YY>) = (
∏`−1
k=n0+2 x

2
k) · ‖x‖4. As long as q is large enough, this quantity is non-zero modulo q, which

implies that Y is invertible modulo q. Observe that for (g1, g2) = NoiseGen(V, σ′) : ct1 = u + g1 and
ct2 = Z · u + g2 +

⌊
q
K

⌋
· xβ , where u←r Zmq .

The proof strategy of [ALS16] is to show that the distribution of Y · ct2 ∈ Z`×1
q is almost independent of

β and therefore the probability of winning the game is almost 1
2 .

Rewrite ct2 = Y−1 ·Y · (Zu + g2 +
⌊
q
K

⌋
· xβ) mod q.

43

Notice that Yct2 =

(
Ytopct2
Ybotct2

)
. Now Ytopct2 does not depend on β because Ytop · x0 = Ytop · x1, from

the functional encryption constraints.
It remains to analyze Ybotct2. Here, [ALS16] prove the following variant of the leftover hash lemma:

Lemma A.3. [ALS16] Conditioned on (A,ZA,Ytop,YtopZ), the min-entropy of YbotZ is greater or equal
than n log q + 2λ.

This lemma can be applied as long as the following lemma due to [PR06] and adapted in [ALS16] holds for
the standard deviation used to generate Z:

Lemma A.4. [ALS16] Let Λ = k ·Z be a 1-dimensional lattice. For any σ ≥ 10 ·k, b ∈ λ and c ∈ R, we have
that DΛ,σ,c(b) ≤ 3/4. In particular, we have H∞(DΛ,σ,c) ≥ 0.4, where H∞(∆) denotes the min-entropy.

As long as the previous two lemmas hold, one can use the leftover hash lemma for the seed u and randomness
YbotZ to argue that given (A,ZA,Ytop,YtopZ), the pair (u,YbotZu) is 1/2λ statistically close from the
uniform distribution over Zmq × Zq, therefore hiding β. The variant of the leftover hash lemma used is the
following:

Lemma A.5 (Lemma 10 in [ALS16]). Let n,m, q ≥ 2 be positive integers. Assume that q = pk for
p prime and k ≥ 1. Assume further that m ≥ 2n log2 q. Let σ ≥ Ω(

√
n+ logm) and c ∈ Zm. Then for

A ∈ Zm×nq sampled uniformly and e ∈ Zm sampled from DZm,σ,c, the distribution of the pair (A, e> ·A) is
within statistical distance 2−Ω(n) of uniform over Zm×nq × Znq .

ut

B Instantiations of Predicate Encodings

B.1 Inner-product encryption with short ciphertexts [BBG05]

The predicate is described by a vector y ∈ Znp , takes as input an attribute x ∈ Znp , and outputs 1 if x>y = 0,
0 otherwise.

– Param: returns the parameters (n+ 2, |ct| = 1, |sk| = n+ 1).
– EncCt(x): given x ∈ Znp returns a matrix C ∈ Z(n+2)×1

p such that C>(v1, v2,w) = v1 + x>w ∈ Zp.
– EncKey(y): given y ∈ Znp returns a matrix K ∈ Z(n+3)×(n+1)

p such that K>(α, v1, v2,w) = (v2y+w, v1 +
α) ∈ Zn+1

p .

– Decode(x,y): if x>y = 0, it returns the vector d :=

−1
x
1

 ∈ Zn+2
p .

B.2 Ciphertext-policy ABE for monotone span programs [GPSW06]

We recall the definition of read-once monotone span programs [KW93]. The predicate is described by a
matrix M ∈ Z`×np , takes as input an attribute x = (x1, . . . , xn) ∈ {0, 1}n, and outputs 1 if the vector
(1, 0, . . . , 0) ∈ Znp is in the column span of Mx, which denotes the collection of vectors {Mj : xj = 1} where
Mj denotes the j’th column of M. That is, x satisfies M if there exists constants ω1, . . . , ωn ∈ Zp such that∑

j:xj=1

ωjMj = (1, 0, . . . , 0) (2)

Observe that the constants {ωj}j∈[n] can be computed in time polynomial in the size of the matrix M via
Gaussian elimination.

44

– Param: returns the parameters (n+ `, |ct| = n, |sk| = n+ 1).
– EncCt(M): given M ∈ Zn×`p returns a matrix C ∈ Z(n+2)×1

p such that C>(w,u, γ) = (w1 + (γ,u)>M1,

. . . , wn + (γ,u)>Mn) ∈ Znp , where Mj denotes the j’th column of M.
– EncKey(x): given x ∈ {0, 1}n, returns a matrix K ∈ Z(n+3)×(n+1)

p such that K>(α,w,u, γ) = (γ +
α, x1w1, . . . , xnwn) ∈ Zn+1

p .
– Decode(x,y): if x>y = 0, it returns the vector d := (x1ω1, . . . , xnωn, 1, ω1, . . . , ωn) ∈ Z2n+1

p .

More predicate encodings can be found in [CGW15], yielding inner-product encryption with short keys
[BB04], non-zero inner-product encryption (introduced in [AL10]), spatial encryption [BH08,BBG05,LW10],
ciphertext-policy for arithmetic span programs [CGW15].

C Instantiations of Function Encodings

C.1 Identity-Based Inner-Product Functional Encryption

Each function is described by an identity id ∈ Zp and a vector y ∈ [0, B]d, takes as input another identity
id′ ∈ Zp and a vector x ∈ [0, B]d, and outputs x>y if id = id′, 0 otherwise. The partial information
part(x, id) = id.

– Param: returns the parameters (2d, |ct| = d, |sk| = n+ 1).
– EncCt(x, id): given x ∈ Znp and id ∈ Zp, returns a matrix C ∈ Z(2d+1)×d

p such that C>(w0,w1,w2) =

(w0x + w1 + idw2) ∈ Zdp.
– EncKey(y, id′): given y ∈ Znp and id′ ∈ Zp, returns a matrix K ∈ Z(2d+1)×1

p such that K>(w0,w1,w2) =

y>(w1 + id′w2) ∈ Zp.
– Decode(id, id′,y): if x>y = 0, it returns the vector d := (y,−1) ∈ Zd+1

p .

Correctness. Let id ∈ Zp, x,y ∈ [0, B]d, C := EncCt(x, id), K := EncKey(y, id) and d := Decode(id, id′,y).
We have (w0,w1,w2)>(C|K)d = (w0x + w1 + idw2)>y − y>(w1 + idw2) = w0x

>y.

Security. Let id0 = id1, id′ ∈ Zp, x0,x1,y ∈ [0, B]d for all b ∈ {0, 1}, Cb := EncCt(xb, idb), K :=
EncKey(y, id). If id0 = id1 = id′, then it must be that y>x0 = y>x1. In that case, security relies on the fact
that the following are identically distributed: w1 and w1 +x1−x0, for w1 ←r Zdp. The left most distribution
corresponds to (w0|w>1 |w>2)(C0|K) whereas the rightmost distribution corresponds to (w0|w>1 |w>2)(C1|K).

If id0 = id1 6= id′, the security relies on the fact that the following are identically distributed: (w1 +
idw2,w1 + id′w2) and (w1 + idw2 + x1 − x0,w1 + id′w2), wherew1,w2 ←r Zdp. The left most distribution
corresponds to (w0|w>1 |w>2)(C0|K) whereas the rightmost distribution corresponds to (w0|w>1 |w>2)(C1|K).

C.2 Orthogonality Testing with Inner-Product Functional Encryption

Each function is described by a predicate vector ỹ ∈ Z`p and a message vector y ∈ [0, B]d, takes as input a
pair

(
x̃ ∈ Z`p \ {0},x ∈ [0, B]d

)
, and returns x>y if x̃>ỹ = 0. The partial information is part(x̃,x) = x̃.

– Param: returns the parameters (d`+ 1, |ct| = 1, |sk| = n+ 1).
– EncCt(x, x̃): returns a matrix C ∈ Z(d`+2)×d

p such that C>(w0, u,w1, . . . ,w`) = Wx̃+w0x ∈ Zdp, where
W ∈ Zd×`p denotes the matrix whose i’th column is wi, for all i ∈ [`].

– EncKey(y, ỹ): returns a matrix K ∈ Z(d`+2)×`
p such that K>(w0, u,w1, . . . ,w`) = W>y + uỹ ∈ Z`p.

– Decode(x,y): if x>y = 0, it returns the vector d := (y, x̃) ∈ Zd+`
p .

Correctness. Let x̃, ỹ ∈ Z`p such that x̃>ỹ = 0, x,y ∈ [0, B]d, C := EncCt(x, x̃), K := EncKey(y, ỹ) and
d := Decode(x̃, ỹ,y). We have (w0, u,w1, . . . ,w`)

>(C|K)d = y>(Wx̃ + w0x) − (y>W + uỹ)x̃ = w0x
>y,

where the last equality uses the fact that x̃>ỹ = 0.

45

Security. Let x̃0 = x̃1, ỹ ∈ Z`p, x0,x1,y ∈ [0, B]d, for all b ∈ {0, 1}, Cb := EncCt(xb, x̃b), K := EncKey(y, ỹ).
If ỹ>x̃0 = ỹ>x̃1 = 0, then it must be that y>x0 = y>x1. In that case, security relies on the fact that the
following are identically distributed: W and W + w0(x1 − x0)v>, where W ←r Zd×`p , and v ∈ Z`p is an
arbitrary vector such that x̃>v = 1 (such a vector exists since x̃ 6= 0).

If ỹ>x̃0 = ỹ>x̃1 6= 0, then security relies on the fact that the following are identically distributed:
(W, u) and

(
W + w0(x1−x0)ỹ>

ỹ>x̃0 , u− w0(x1−x0)>y

ỹ>x̃0

)
, with W ←r Zd×`p and u ←r Zp. The left most dis-

tribution corresponds to (w0, u,w1, . . . ,w`)
>(C0|K) whereas the rightmost distribution corresponds to

(w0, u,w1, . . . ,w`)
>(C1|K).

C.3 Fully-hiding Orthogonality Testing with Inner-Product Functional Encryption

Each function is described by a predicate vector ỹ ∈ Z`p and a message vector y ∈ [0, B]d, takes as input a
pair

(
x̃ ∈ Z`p \ {0},x ∈ [0, B]d

)
, and returns x>y if x̃>ỹ = 0. There is no partial information: part(x̃,x) = ∅.

– Param: returns the parameters (2d+ d`, |ct| = 1, |sk| = n+ 1).
– EncCt(x, x̃): returns a matrix C ∈ Z(2d+d`+1)×(d`+d)

p such that C>(w0,u,v, vect(W)) = (vect(ux̃> +
W),u + w0x) ∈ Zdp, where for any matrix M ∈ Zn×mp , we denote by vect(M) ∈ Znmp the vector such
that for all x ∈ Znp , y ∈ Zmp , vect(M)>(x⊗ y) = x>My. Here, u,v ←r Zdp, and W←r Zd×`p .

– EncKey(y, ỹ): returns a matrixK ∈ Z(2d+d`+1)×1
p such thatK>(w0,u,v, vect(W)) = y>Wỹ+y>v ∈ Zp.

– Decode(ỹ,y): it returns the vector d := (y ⊗ ỹ,y,−1) ∈ Zd`+d+1
p .

Correctness. Let x̃, ỹ ∈ Z`p such that x̃>ỹ = 0, x,y ∈ [0, B]d, C := EncCt(x, x̃), K := EncKey(y, ỹ) and
d := Decode(ỹ,y). We have (w0,u,v, vect(W))>(C|K)d = y>(ux̃>+W)ỹ+(v+w0x)>y−y>Wỹ+y>v =

w0x
>y, where the last equality uses the fact that x̃>ỹ = 0.

Security. Let x̃0, x̃1, ỹ ∈ Z`p, x0,x1,y ∈ [0, B]d, for all b ∈ {0, 1}, Cb := EncCt(xb, x̃b), K := EncKey(y, ỹ).
If ỹ>x̃0 = ỹ>x̃1 = 0, then it must be that y>x0 = y>x1. In that case, security relies on the fact that the
following are identically distributed: v and v + w0(x1 − x0), where v ←r Zdp.

If ỹ>x̃0 6= 0 and ỹ>x̃1 6= 0, then we show that (w0,u,v, vect(W))>(Cb|K) is independent of b, using
the fact that the following are identically distributed: (W,v) and (W+u(x1−x0)>,v+w0(x1−x0)), with
W ←r Zd×`p and v ←r Zdp. The left most distribution corresponds to (w0, u,w1, . . . ,w`)

>(Cb|K)>(w0, u,

w1, . . . ,w`) := (vect(ux̃b>+W),v+w0x
b,y>Wỹ+y>v) whereas the rightmost distribution corresponds to

(vect(W),v,y>Wỹ + y>v− w0y
>xb − y>u ỹ> · x̃b︸ ︷︷ ︸

6=0

). If y = 0, then the gray term in the last distribution

disappears, which means the distribution is independent of b. If y 6= 0, the value y>u is uniformly random
over Zp, and since the value ỹ> · x̃b is different from 0, that means the gray term itself is uniformly random
over Zp, independent of b.

C.4 Ciphertext-policy ABE for Read-once Monotone Span Programs with Inner-Product
Functional Encryption

Each function is described by a characteristic vector a = (a1, . . . , an) ∈ {0, 1}n, and a vector y ∈ [O,B]d.
It takes as input an access structure, which is a matrix M ∈ Zn×`p , and a vector x ∈ [0, B]d and outputs
x>y if the vector (1, 0, . . . , 0)> ∈ Z1×`

p is in the row span of Ma, which denotes the collection of vectors
{Mj : aj = 1} where Mj denotes the j’th row of M. That is, a satisfies M if there exists constants
ω1, . . . , ωn ∈ Zp such that ∑

j:aj=1

ωjMj = (1, 0, . . . , 0) (3)

46

Observe that the constants {ωj}j∈[n] can be computed in time polynomial in the size of the matrix M via
Gaussian elimination.

The partial information is: part(a,x) = a.

– Param: returns the parameters (2d+ d`, |ct| = 1, |sk| = n+ 1).
– EncCt(x,M): returns a matrixC ∈ Z2dn×d(n+1)

p such thatC>(w0,v, vect(U),w1, . . . ,wn) = ((v|U)M1+

w1, . . . , (v|U)Mn + wn,v + w0x) ∈ Zd(n+1)
p . Here, v ←r Zdp, wi ←r Zdp for all i ∈ [n], and U←r Zd×np .

– EncKey(y,a): returns a matrix K ∈ Z2dn×dn
p such that K>(w0,v, vect(U)) = (w1a1, . . . ,wnan) ∈ Zdnp .

– Decode(ỹ,y): it returns the vector d := (−yω1a1, . . . ,−yωnan,y,yω1, . . .yωn) ∈ Z2dn+d
p .

Correctness. Let a ∈ {0, 1}n ant M ∈ Zn×`p such that a satisfies M, x,y ∈ [0, B]d, C := EncCt(x,M), K :=

EncKey(y,a) and d := Decode(a,M,y). We have (w0,v, vect(U),w1, . . . ,wn)>(C|K)d =
−
∑
j:aj=1 ωj(y

>(v|U)Mj + y>wj) + w0x
>y + y>v + y>Wỹ +

∑
j:aj=1 ωjy

>(v|U)Mj = w0x
>y, where

the last equality uses (3).

Security. Let a ∈ {0, 1}n, x0,x1,y ∈ [0, B]d, M ∈ Zn×`p , for all b ∈ {0, 1}, Cb := EncCt(xb,M), K :=
EncKey(y,a). If a satisfies M, then x0 = x1 and there is nothing to prove.

If a doesn’t satisfies M then we show that (w0,v, vect(U),w1, . . . ,wn)>(Cb|K) is independent of b,
using the fact that for all a ∈ {0, 1}n, the following are identically distributed : {wi}i∈[n] and {wi + (ai −
1)(v|U)Mi}i∈[n], with wi ←r Zdp for all i ∈ [n], v ←r Zdp, and U←r Zd×(n−1)

p . The leftmost distribution cor-
responds to (Cb|K)>(w0,v, vect(U),w1, . . . ,wn) :=

(
(v|U)M1 + w1, . . . , (v|U)Mn + wn,v + w0x

b
)
whereas

the rightmost distribution corresponds to
(
a1(v|U)M1 + w1, . . . , an(v|U)Mn + wn,v + w0x

b
)
. Since a does

not satisfiesM, we have: (a1(v|U)M1, . . . , an(v|U)Mn) is independent of v, which can be used to mask w0x
0.

Formally, that means the following are identically distributed: (a1(v|U)M1 +w1, . . . , an(v|U)Mn +wn,v+
w0x

0) and (a1(v|U)M1 + w1, . . . , an(v|U)Mn + wn,v + w0x
1).

47

	Introduction
	Preliminaries
	Pairing groups
	Functional Encryption

	Inner-Product FE with Fine-grained Access Control
	FE with simulation, selective security
	FE with adaptive, indistinguishability based security

	A Lattice-Based Identity-Based Functional Encryption in the Random-Oracle Model
	Lattice Preliminaries
	Our Construction

	A Lattice-Based Identity-Based Functional Encryption in the Standard Model
	Preliminaries
	Our Construction

	Multi-Input Inner-Product FE with Rich Access Control
	Definitions
	Generic Construction

	Acknowledgments
	The ALS inner-product functional encryption scheme
	Instantiations of Predicate Encodings
	Inner-product encryption with short ciphertexts EC:BonBoyGoh05
	Ciphertext-policy ABE for monotone span programs CCS:GPSW06

	Instantiations of Function Encodings
	Identity-Based Inner-Product Functional Encryption
	Orthogonality Testing with Inner-Product Functional Encryption
	Fully-hiding Orthogonality Testing with Inner-Product Functional Encryption
	Ciphertext-policy ABE for Read-once Monotone Span Programs with Inner-Product Functional Encryption

