Расчет максимальной токовой защиты

Теория и пример расчета.

ЛЭП - 10 кВ

Для расчета МТЗ ЛЭП 10 кВ используются следующие данные:

ЛЭП -10 кВ воздушная; длина L_3 = 8 км; x_0 = 0,4 Ом/км.

Мощность к.з. системы $S_{K.3.C}$ =10000 MBA;

Длина ЛЭП 110 кВ L_I = L_2 =20 км; \mathbf{x}_0 = 0,4 Ом/км.

Мощность нагрузки S_{HI} =3,0 MBA (спокойная нагрузка);

Мощность двигателя S_{MI} =1,6 МВА (асинхронный высоковольтный двигатель АД, $\mathbf{k}_{\text{пуск}}$ =6);

В измерительной части МТЗ используем статические реле на интегральных микросхемах РСТ-11.

Основное требование при настройке МТЗ чтобы ток срабатывания МТЗ I_{cpMT3} был больше максимального тока нагрузки в нормальном режиме $I_{pa6.max}$.

Нагрузка для ЛЭП будет состоять из асинхронного электродвигателя М₁ и нагрузки электроприемников Н1:

$$S_{{\scriptscriptstyle H}\!\varPi\Im\Pi}=S_{{\scriptscriptstyle H}1}+S_{{\scriptscriptstyle M}1}$$

номинальный ток от нагрузки Н1

$$I_{H1} = \frac{S_{H1}}{\sqrt{3} \cdot U} = \frac{3000}{\sqrt{3} \cdot 10,5} = 165,15 A,$$

номинальный ток двигателя

$$I_{M1} = \frac{S_{M1}}{\sqrt{3} \cdot U} = \frac{1600}{\sqrt{3} \cdot 10.5} = 88 A,$$

пусковой ток электродвигателя при $k_{nyc\kappa}$ =6 будет равен

$$I_{nvck} = I_{HOM,M1} \cdot k_{nvck} = 88 \cdot 6 = 528 A,$$

величина номинального рабочего тока ЛЭП будет равна

$$I_{pa6} = I_{H1} + I_{M1} = 165,15 + 88 = 253,15 A,$$

далее выбираем трансформаторы тока и определяем коэффициент их трансформации $\eta_{\scriptscriptstyle T} = \frac{I_{\scriptscriptstyle 1}}{5}$.

Величина тока I_1 принимаем равным 300A. Тогда

$$\eta_T = \frac{I_1}{5} = \frac{300}{5} = 60$$

где I_I — ближайшая наибольшая величина стандартного первичного тока трансформатора тока.

При настройке МТЗ ЛЭП 10 кВ необходимо выполнить условие

$$I_{\mathit{cpMT3}} \geq I_{\mathit{pa6.\,max}\,\mathit{ЛЭ\Pi}}$$

Рабочий максимальный ток ЛЭП $I_{pa6.max,ЛЭП}$ будет состоять из тока нагрузки электроприемников I_{H1} и пускового тока электродвигателя $I_{nvc\kappa}$ M_1

$$I_{pa6,\text{max}} = I_{H1} + I_{nvc\kappa} = 165,15 + 528 = 693,15A$$

Зная рабочий максимальный ток в ЛЭП (с учетом пускового тока двигателя) определяем вторичный ток срабатывания МТЗ. [1, 3]

$$I_{cp.MT3} = \frac{k_H \cdot I_{pa6.\text{max}} \cdot k_{cx}}{k_{603} \cdot n_T}$$

где k_H — коэффициент надежности; из-за наличия пускового тока АД принимается равным 1,4 для реле РСТ-11(ПУЭ);

где k_{cx} =1 («неполная звезда» – схема соединения трансформаторов тока);

 k_{603} =0,95 (для реле РСТ-11);

 n_T – коэффициент трансформации трансформаторов тока.

Тогда величина вторичного тока срабатывания МТЗ будет равна

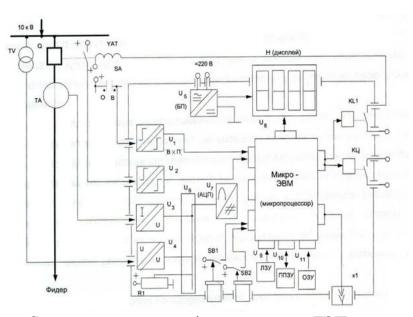
$$I_{cp.MT3} = \frac{k_H \cdot I_{pa6.\text{max}} \cdot k_{cx}}{k_{603} \cdot n_T} = \frac{1,4 \cdot 693,15 \cdot 1}{0,95 \cdot 60} = 17A$$

Находим время срабатывания МТЗ

$$t_{cp.MT3} = t_{cp.P3} + \Delta t = 0.8 + 0.6 = 1.4ce\kappa.$$

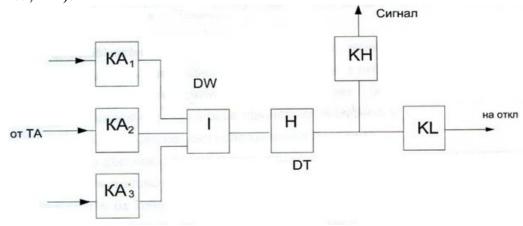
где $t_{cp.P3}$ – выдержка времени на последующей защите;

 Δt — ступень селективности с реле РСТ-11, принимаем Δt равным 0,6 сек. (ПУЭ).


Проверяем защиту на чувствительность

$$k_{_{q}} = \frac{I_{k \min(K2)}}{I_{_{CD,MT3}}} = \frac{1612/60}{17} = 1,58 > 1,5$$

где $I_{kmin(K2)}$ – ток к.з. в конце ЛЭП 10 кВ ($I_{kmin(K2)}$ = 1612 A).


Вывод: максимальная токовая защита воздушной ЛЭП проходит по чувствительности.

Цифровое исполнение защиты ЛЭП представлено

Структурная схема цифровой защиты ЛЭП

Принцип и алгоритм работы МТЗ можно представить в виде алгебры логики (DW, DT).

Логическая схема МТЗ, где KA_1 , KA_2 , KA_3 – реле тока, DW – логический элемент ИЛИ, DT – логический элемент выдержки времени

Ток от трансформаторов тока ТА, фаз А, В, С подается на токовое реле КА. В нормальном режиме ток срабатывания реле $I_{\rm сраб}$ меньше рабочего максимального тока нагрузки ЛЭП и на выходе элемента DW (ИЛИ) присутствуют нулевые сигналы. При КЗ на ЛЭП ток через реле становится больше тока срабатывания реле и на выходе элемента DW появляется сигнал, равный 1. В элементе DT (выдержка времени) реализуется время срабатывания в соответствии с требования селективной работы защиты.

Алгоритм релейной защиты можно записать в виде логической функции N:

 $N=(KA_1 OR KA_2 OR KA_3) AND DT1=1$

Где KA_1 , KA_2 , KA_3 — логические сигналы на выходах токовых реле DT1 — оператор временного реле защиты.

Задание

Определить вторичный ток срабатывания МТЗ ЛЭП 10 кВ используются данные по варианту из таблицы 1, проверить защиту на чувствительность при

Данные не заданные в таблице брать из примера расчета.

Таблица 1 – Исходные данные для расчета

№ вар.	$S_{K.3.C.}$, MBA	е данные для ра _{SHI} , MBA	S_{MI} , MBA	x_0 , Om/km	$I_{kmin(K2)}$, A
1	10000	3,0	1,6	0,4	1612
2	12000	2,0	1,1	0,3	1420
3	8000	1,7	1,0	0,35	1250
4	15000	3,2	1,8	0,45	1705
5	18000	3,5	2,0	0,5	2100
6	10000	3,0	1,6	0,4	1612
7	12000	2,0	1,1	0,3	1420
8	8000	1,7	1,0	0,35	1250
9	15000	3,2	1,8	0,33	1705
			·	· · · · · · · · · · · · · · · · · · ·	
10	18000	3,5	2,0	0,5	2100
	10000	3,0	1,6	0,4	1612
12	12000	2,0	1,1	0,3	1420
13	8000	1,7	1,0	0,35	1250
14	15000	3,2	1,8	0,45	1705
15	18000	3,5	2,0	0,5	2100
16	10000	3,0	1,6	0,4	1612
17	12000	2,0	1,1	0,3	1420
18	8000	1,7	1,0	0,35	1250
19	15000	3,2	1,8	0,45	1705
20	18000	3,5	2,0	0,5	2100
21	10000	3,0	1,6	0,4	1612
22	10000	3,0	1,6	0,4	1612
23	12000	2,0	1,1	0,3	1420
24	8000	1,7	1,0	0,35	1250
25	15000	3,2	1,8	0,45	1705
26	18000	3,5	2,0	0,5	2100
27	10000	3,0	1,6	0,4	1612
28	12000	2,0	1,1	0,3	1420
29	8000	1,7	1,0	0,35	1250
30	15000	3,2	1,8	0,45	1705
31	10000	3,0	1,6	0,4	1612
32	12000	2,0	1,1	0,3	1420
33	8000	1,7	1,0	0,35	1250
34	15000	3,2	1,8	0,45	1705
35	18000	3,5	2,0	0,5	2100
36	10000	3,0	1,6	0,4	1612
37	12000	2,0	1,1	0,3	1420
38	8000	1,7	1,0	0,35	1250
39	15000	3,2	1,8	0,45	1705
40	18000	3,5	2,0	0,5	2100
41	10000	3,0	1,6	0,4	1612
42	12000	2,0	1,1	0,3	1420
43	8000	1,7	1,0	0,35	1250
44	15000	3,2	1,8	0,45	1705
45	18000	3,5	2,0	0,5	2100
46	10000	3,0	1,6	0,4	1612
47	12000	2,0	1,1	0,3	1420
48	8000	1,7	1,0	0,35	1250
49	15000	3,2	1,8	0,45	1705
. /	15000	3,5	2,0	0,5	1,05